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Bending in extrusion of optical fibre preforms
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Abstract

An optical fibre is made by stretching, or ‘drawing’, a glass or poly-
mer preform in a drawing tower. Extrusion through dies has received
much recent attention as a suitable method for manufacture of pre-
forms of complex shape and novel material composition. However, the
preforms are subject to bending during extrusion, so that the final pre-
form has a bent end that must be removed to yield a straight preform
to be drawn into a fibre. Control of bending is needed to improve the
efficiency of preform extrusion and reduce wastage of high-cost mate-
rial. Bending occurs even for simple axisymmetric die geometries and
in the absence of heating. Hence, we here examine asymmetry in the
applied pressure as a cause of bending. Assuming a linear stress pro-
file, and using a quasi-static approach, we determine the relationship
between the magnitude of asymmetry and the amount of bend of the
preform, for preforms with circular or annular cross section. We show
that significant bend may be caused by an asymmetry that is small
relative to the applied pressure. A simple idea for controlling bending
is also suggested. Undergraduate university level mathematics is used
in the analysis, making this a useful educational illustration of the role
of mathematics in understanding engineering problems.
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1 Introduction

An optical fibre is made by stretching, or ‘drawing’, a glass or polymer pre-
form in a drawing tower. A typical preform has a length of 10–30 cm and
a diameter of 1–3 cm and is intended to be a macroscopic version of the
final fibre which will be several kilometres in length and have a diameter
of around 100µm. A high quality preform is a necessary prerequisite to a
high quality fibre, fit for its intended purpose. Automated and consistently
reproducible manufacture of high quality preforms is needed for commercial
production of microstructured optical fibres having patterns of holes with di-
ameters measured in micrometres in the cross section, and extrusion through
metal dies is seen as a promising method for manufacture of the preforms [2].

The experimental extruder used at the Centre of Expertise in Photonics at
The University of Adelaide (cep-ua) for research into preform extrusion is
constructed so that the longitudinal axis of the die is vertical and preforms
are extruded vertically downwards. However, the preforms are subject to
bending. Initially, the preform bends as it exits the die, but as the extruded
length increases it straightens, so that the final preform has a bent end.
Figure 1 shows an example of this for a simple polymer preform of circular
cross section. The bent end must be cut off to yield a straight rod-like preform
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Figure 1: An extruded polymer preform of circular cross section (that is,
a rod preform). The end furthest from the die, corresponding to the part
first extruded, is bent. (Photograph courtesy of the Centre of Expertise in
Photonics, The University of Adelaide.)

for drawing into a fibre. In turn, the length of fibre that can be drawn from
the preform is reduced; in some instances the preform is completely unusable.
This is not only a cause of inefficiency in the production of optical fibre, but
there is wastage of high-cost material also.

Bending is seen in other extrusion processes also and understanding the
causes and mechanisms for control have received some attention, with non-
isothermal temperature and asymmetry in die geometry identified as likely
causes [1, 4]. In extrusion of optical fibre preforms asymmetries in die geom-
etry or temperature profile are potential causes of bending [5], but bending
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Figure 2: Bending of preform during extrusion.

occurs for simple axisymmetric die geometries and when extruding plasticine
in the absence of heating. Thus, noting that high pressures (approximately
10–20MPa for glass and approximately 1–10MPa for polymer [3]) are re-
quired for preform extrusion, we here investigate asymmetry in the applied
pressure as a cause of bending of optical fibre preforms. For this we consider
the simplest cases of extruding circular rod or tube preforms and assume an
axisymmetric die (although not practically feasible for a preform of annular
cross section). We also assume a uniform temperature in any cross section, so
that the temperature only varies along the preform, which precludes bending
induced by temperature variation.

The mathematics used in our analysis of this problem is at undergraduate
university level. The mathematical detail given is intended to facilitate the
use of this problem as an educational illustration of the role of mathematics
in understanding engineering problems.
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2 Quasi-static model

Preforms, especially glass preforms, are extruded very slowly over a period
of hours. Most of the applied force is resisted by the die and the extrudate
becomes, effectively, solid after exiting the die. This suggests the following
explanation for bending.

The stress at the die outlet is, essentially, due to the weight of material
hanging below. However, a small asymmetry in the setup of the extruder
will lead to a small asymmetry in the stress profile across the die exit to
be resolved into a uniform stress plus a moment. The moment causes the
preform to move off-centre, that is, to bend, so as to balance the forces
and moments. As the weight of the preform below the die exit increases,
the amount by which the preform must be off-centre decreases, so that the
preform straightens out as its length increases. This is depicted in Figure 2.
We examine this explanation as a quasi-static problem. This approach is valid
only once the bend has formed but still yields some useful information. In
particular, we consider the relationship between the magnitude of asymmetry
in the stress distribution and the amount of bend in the preform.

If the setup is axisymmetric, there is a uniform tensile stress σ across the die
outlet (of area A), and hence a net force W = σA acting upwards along the
axis of the die and preform to balance the weight W of the preform hanging
below (Figure 3a). If the stress distribution is non-uniform, the force W acts
through a line a distance d from the die axis, which equates to a force W
acting along the axis and a moment (or couple) M = Wd acting about the
axis (Figure 3b).

Consider an annular die of inner radius a and outer radius b > a ; the special
case a = 0 yields a rod die. Suppose that the stress increases linearly across
the die outlet in the direction of the x axis, the origin of which is at the
axis of the die, as in Figure 3(b). (The setup of the extruder at the cep-ua
makes this a distinct possibility.) Then the tensile stress distribution is

σ(x) = kx+ σ0 ,
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Figure 3: Forces and moments.

where σ0 = σ(0) =W/A, A = π(b2−a2), is the average stress. To determine
the moment about x = 0 consider a circular die outlet of radius b (that is,
let a = 0). Next we take a small portion of the outlet area of small width dx,
spanning the outlet in a direction perpendicular to the x axis, as shown in
Figure 4. If this region is located at position x, it has area A = 2

√
b2 − x2 dx .

The force acting over this region is F = σ(x)A and this yields a moment Fx
about x = 0 . Integrating (summing) over all such segments from x = −a
to x = a yields the total moment resulting from a linear stress profile over a
circular die exit

M =

∫b
−b

Fxdx =

∫b
−b

2(kx+ σ0)
√
b2 − x2 xdx .

For an annular die exit we must subtract the contribution from the circular
region of radius a, so that

M =

∫b
−b

2(kx+ σ0)
√
b2 − x2 xdx−

∫a
−a

2(kx+ σ0)
√
a2 − x2 xdx
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Figure 4: Portion of die outlet area of small width dx at some position x,
spanning the outlet in a direction perpendicular to the x axis (shown shaded).

= 2k

∫b
−b

x2
√
b2 − x2 dx+ 2σ0

∫b
−b

x
√
b2 − x2 dx

− 2k

∫a
−a

x2
√
a2 − x2 dx− 2σ0

∫a
−a

x
√
a2 − x2 dx .

The second and fourth terms, due to the average stress σ0, contribute noth-
ing to the moment, as can be verified by integration or by noting that the
integrand is an odd function. The first and third terms are integrated using
the substitutions x = b sin θ and x = a sin θ , respectively. The expression
obtained must be equal to the moment Wd, yielding

M =Wd =
k(b4 − a4)π

4
or d =

k(b4 − a4)π

4W
. (1)

As already commented d is the distance along the x axis from the die axis
to the line through which the upward force opposing the preform weight is
acting. For balance of forces and moments, it must also be the distance from
the die centreline to the centre of mass of the preform. Assuming that k
remains constant, it is clear that d decreases as the weight W of the preform
increases.
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Figure 5: Bend geometry.

We relate the distance d to the shape of the preform as follows. Firstly,
we divide the preform hanging below the die outlet into an upper straight
section of weight W1 and a lower bent section of weight W2. Since the axis
of the straight section is coincident with the axis of the die, it contributes
nothing to the restoring moment −Wd (in the clockwise direction) balancing
the anticlockwise moment Wd due to the asymmetric stress distribution.
Hence, the restoring moment

M = −Wd = −(W1 +W2)d = −W2x̄ ,

where x̄ is the offset of the centre of mass of the bent section of the preform
from the axis of the die. If the bent portion of the preform has length L2 and
deviation δ from vertical at the bottom (see Figure 5), and we assume the
bend to be a circular arc of radius R subtending angle θ,

L2 = R sin θ , δ = R(1− cos θ).

Then, the offset x̄ from the die axis of the centre of mass of the bent portion
of the preform is determined by

W2x̄ = ρg

∫ θ
0

π(b2 − a2)R2(1− cos θ ′)dθ ′ = ρgπ(b2 − a2)R2(θ− sin θ),
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where ρ is the density of the preform material and g is gravitational acceler-
ation. Thus, using (1),

ρgπ(b2 − a2)R2(θ− sin θ) =
k(b4 − a4)π

4
,

and hence

k = (θ− sin θ)
4ρgR2

b2 + a2
. (2)

The distance from the die axis to the centre of mass of the whole preform of
weight W is

d =
W2x̄

W
=
ρgπ(b2 − a2)R2(θ− sin θ)

W
=
R2(θ− sin θ)

L1 + Rθ
, (3)

where L1 is the length of the straight section of preform, above the bend.

3 Analysis of bending

Experimental results have been provided by the cep-ua for solid glass pre-
forms (a = 0) having radius b = 0.5 cm and total length L = L1+L2 = 20 cm.
Bent ends have length L2 = R sin θ ≈ 4 cm and deviations δ = R(1− cos θ) ≈
0.4 cm, from which

L2

δ
=

sin θ

1− cos θ
= f(θ) = 10 .

By graphing f(θ), or otherwise, we find θ ≈ 0.2 radians ≈ 12◦. Then R =
L2/ sin θ ≈ 20 cm. For glass of density ρ = 2.5 g/cm3, (2) and (3) yield

k = 2.1 kPa/cm and d = 0.027 cm,

while the average stress is

σ0 =W/A = ρg(L1 + Rθ) = 4.9 kPa.
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Thus, this analysis yields a linear stress profile across the 1 cm diameter of the
die outlet with 3.8 6 σ 6 5.9 kPa. Given that, for extrusion of glass preforms,
the applied pressure is 10–20MPa, an asymmetry of order ±10−3 MPa is
small and quite conceivable.

Next we consider a tube preform of the same external radius b = 0.5 cm;
thus 0 < a < b . If θ and R are as above, that is, the bend geometry
is similar to that for the rod preform, then equation (2) shows that k is
smaller. Thus, for a given bend geometry, less asymmetry in the stress profile
is required for a tube preform than a rod preform. However, because the
applied pressures used for extrusion of tube preforms are similar to those used
for rod preforms, we expect a similar value of k. Then, if the bend radius R
is as for the rod preform, the bend angle θ must be larger. Unfortunately,
we do not have experimental data to directly confirm this. That available to
us is for tube preforms with external radius b = 0.5 cm and small internal
radius a = 0.1 cm. This internal radius is not sufficiently large to have a
significant difference on the bend geometry which is very similar to that seen
in the rod preforms.

A typical polymer has a density of 1.15 g/cm3. Then, for a polymer preform,
the stresses at the die outlet are 1.15/2.5 = 0.46 of those that would pertain if
the preform were of glass. If polymer preforms are extruded using pressures
of the same magnitude as used for glass (10–20MPa) then we expect the
stress asymmetry at the die outlet, that is k, to be of a similar magnitude
also. Then, from equation (2) we have

(θp − sin θp)R
2
p

(θg − sin θg)R2g
=
ρg

ρp
=
2.5

1.15
= 2.17 ,

where θp, Rp and ρp are the bend angle and radius for a polymer preform
and the polymer density, respectively, and θg, Rg and ρg are those quantities
for a similar glass preform. From this we expect more significant bending in
polymer preforms than glass preforms, and this is indeed seen in practice.
To keep the extent of bending in polymer preforms commensurate with that
of glass preforms it is necessary to reduce the extrusion pressure to half or
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less of that used for glass. Thus, for polymer preforms extrusion pressures of
1–10MPa are used [3].

4 Conclusions

Bending during extrusion is often attributed to non uniformity in temper-
ature and/or asymmetry in die geometry. These factors can be causes of
bending in extrusion of optical fibre preforms. However, significant bending
occurs when extruding plasticine (with no heating) through an axisymmetric
rod die, using the extruder at the cep-ua. The analysis conducted herein
shows that preform bending can result from small asymmetries in the ap-
plied pressure, something which is seen as a distinct possibility with the
experimental extruder in question.

For rod preforms made of glass of diameter 1 cm, a linear stress profile across
the die outlet diameter with a pressure difference of about 2 kPa from one side
to the other is sufficient to cause the bends seen in practice. This compares
with applied pressures of around 20MPa used for extrusion of these preforms.
Assuming a similar asymmetry of ±1 kPa/cm in the pressure applied during
extrusion, we have that a very small asymmetry in the applied pressure can
result in significant bending of the preform.

Given the small magnitude of this asymmetry it seems, at first, that little
can be done to control bending of preforms. However, this work also shows
that applying a small force, of the same magnitude as the weight of the bent
portion of a preform (W2 = ρgπ(b2 − a2)Rθ), to the end of the preform
as it emerges from the die will prevent bending due to asymmetry in the
applied pressure. For a rod preform of 1 cm diameter made from glass, this
is a weight of about 0.08N corresponding to a mass of 8 grams. Following
this work, the extruder at the cep-ua was modified to allow application of
such a force as the preform emerges from the die. This has greatly alleviated
the problem of preform bending and also provides more control in the event
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of non-isothermal conditions and asymmetries in die design [5].
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