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Abstract

We consider systems having many independent components con-
nected in a parallel or series configuration with non-identical failure
distributions. A time dependent measure is proposed which evaluate
the probability that a failure of the system occurred at a specified
component under the condition that the system has failed by some
time. We proved several properties of this measure for parallel and
serial systems.
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1 Introduction

Several failure models have been proposed and failure probabilities evaluated
in reliability research by people such as Beichelt and Fischer [2], Nakagawa [7],
Sheu and Griffith [10], and Cha and Mi [3]. We are interested in the following
failure probability. Consider a system with n components. Let Xi be the
lifetime of component i, i = 1, 2, . . . ,n , and T is the lifetime of the system. If
the system is connected in series, then T = min16i6n Xi and, if it is a parallel
connection, then T = max16i6n Xi . Cha and Mi [3] considered the following
probability function and studied its properties

pj(t) = Pr(Xj = T | T = t). (1)

That is, the probability that the failure of the system is caused by the
jth component given that it fails at time t. However, in real applications we
do not usually observe the exact time when the system fails but rather whether
the system has already failed prior to t, that is instead of the conditioned
event in (1) being T = t , it is more appropriate to consider T 6 t . Motivated
by this fact, the objective of this study is the probability function

Ljn(t) = Pr(Xj = T | T 6 t). (2)

When the system is parallel, this probability can be used to obtain information
on the probability of failure time of the components of the system. In a series
system, it determines the failed component of the system. The expressions,
after we let t→ ∞ in (1) and (2), correspond to the importance measures of
components in a coherent system discussed by Barlow and Proschan [1].

We consider various properties of Ljn(t) for parallel system and series system in
Section 2 and Section 3 respectively. But first we overview some preliminary
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concepts related to ageing and partial orderings between random variables
which will be referred to later on. The two ageing concepts defined for a
random variable X with distribution function F(x) and density f(x) are the
reversed hazard rate (rhr)

rX(t) = lim
δ→0

Pr(t− δ < X < t | X 6 t)
δ

=
f(t)

F(t)
, (3)

and mean past lifetime (mpl)

mX(t) = E(t− X | X 6 t) =

∫t
0
F(x)dx

F(t)
, (4)

provided F(t) > 0 . The rhr gives the failure rate of the component just
before time t, whereas the mpl corresponds to the mean time elapsed since
the failure of X given that X 6 t .

The symbol X | A denotes the random variable X conditional on an event A.
The symbol F̄ = 1−F refers to the reliability function. Also, increasing means
non-decreasing and decreasing will mean non-increasing. We next give some
related partial ordering concepts which will be referred to later [9].

• A random variable Y is said to be smaller than X in the usual stochastic
order (denoted by Y 6st X) if Ḡ(x) 6 F̄(x) for all x.

• X is said to be smaller than Y in the rhr order (denoted by X 6rh Y) if
rX(t) 6 rY(t), for all t > 0 .

• X is said to be less than the random variable Y in the mpl ordering
(written as X 6mpl Y) if mX(t) > mY(t) for all t > 0 .

2 Parallel systems

A system is said to have a parallel structure if it will only operate if at least one
of its components operate. We consider a parallel system with n components.
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Assume that Xi, the lifetime of ith component, i = 1, 2, . . . ,n , has distribution
function Fi, reliability function F̄i, rhr ri and mpl mi. Furthermore, let Xk:n,
k = 1, 2, . . . ,n , denote the kth ordered lifetime (kth order statistic) of the
components. Suppose that at the time of monitoring the system, the operator
realizes that the system has already failed. That is, the operator knows that
Xn:n 6 t , where t is the time the system is monitored. The probability that
this was caused by component j is

Ljkn(t) = Pr(Xk:n = Xj | Xn:n 6 t)

=
1∏n

i=1 Fi(t)

∑
π

Pr(Xπ1 < · · · < Xπk−1
< Xj < Xπk+1

< · · · < Xπn 6 t),

(5)

where π1, . . . ,πk−1,πk+1, . . . ,πn is a permutation of {1, . . . , j− 1, j+ 1, . . . ,n}.
For example, in the case n = 3 , k = 1 , j = 2 ,

L213(t) =
1∏3

i=1 Fi(t)
[Pr(X2 < X1 < X3 6 t) + Pr(X2 < X3 < X1 6 t)] .

We concentrate on a special case which is of particular interest to engineers
and system designers. This case arises when we take k = n , corresponding
to T = Xn:n , the lifetime of the system. Here, Ljnn(t) = L

j
n(t) defined in (2),

which is the probability that the lifetime of the system is equal to that of the
jth component of the system, under the condition that system has failed by
time t. First note that, for j = 1, 2, . . . ,n , we obtain from (5) that

Ljn(t) = Pr(Xn:n = Xj | Xn:n 6 t) =
1∏n

k=1 Fk(t)

∫ t
0

n∏
i=1
i6=j

Fi(xj)dFj(xj). (6)

The proportional rhrs model is a dual model of the well-known proportional
hazards model (introduced by Cox [4]). The concept of proportional rhrs,
which have applications in survival analysis and life testing, is introduced by
O’Neill [8] and studied by others [6, e.g.]. Two random variables X and Y,
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with distribution functions F and G, are said to have proportional Reversed
Hazards Rates (rhrs) if there exists c > 0 such that

F(t) = [G(t)]c, t > 0 . (7)

If the rhrs of X and Y exist, that is the distribution functions are absolutely
continuous, then (7) is equivalent to

rX(t) = crY(t)

for any t > 0 . For further properties and applications of this model see
Gupta and Gupta [5] and references therein.

Theorem 1 For any j = 1, 2, . . . ,n , Ljn(t) is independent of time if and
only if maxi6=j{Xi} and Xj have proportional rhrs.

Proof. Denote by rmaxi6=j{Xi}(t) and rXj
(t) the rhrs of maxi6=j{Xi} and Xj,

j = 1, 2, . . . ,n , respectively. Then (7) implies

n∏
i=1
i6=j

Fi(t) = (Fj(t))
c

for some c > 0 . Using (6), we readily obtain Ljn(t) = 1/(c + 1) which is
independent of time. Conversely, assume that Ljn(t) = b where b is a constant
such that 0 < b < 1 . Differentiating both sides of (6) with respect to t gives

rXj
(t) = b

(
rmaxi6=j{Xi}(t) + rXj

(t)
)

,

or

rXj
(t) =

b

1− b
rmaxi6=j{Xi}(t),

therefore maxi 6=j(Xi) and Xj, have proportional rhrs. In particular, if b =
1/2 , then maxi6=j(Xi) and Xj have identical distribution.

The next theorem shows that if the rhrs of two components of the system
are ordered, then their corresponding L(t) functions are also ordered.
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Theorem 2 Let rji(t), i = 1, 2 , denote the rhr of the jith component of the
system, ji = 1, 2, . . . ,n , If rj1(t) 6 rj2(t) for any t > 0 , then

Lj1n (t) 6 L
j2
n (t).

Proof: Using (6),

Lj2n (t) − L
j1
n (t) =

1∏n
k=1 Fk(t)

∫ t
0

n∏
i=1

Fi(x)[rj2(x) − rj1(x)]dx > 0

under the assumption of the theorem and this completes the proof. ♠

Note that when the system is parallel, the probability function defined in (1)
is equal to

pj(t) = Pr(Xj = Xn:n | Xn:n = t).

Cha and Mi [3] showed that pj(t) can be represented in terms of the rhrs of
the components as

pj(t) =
rj(t)∑n
i=1 ri(t)

. (8)

On differentiating the right hand side of (6), one easily shows that Ljn(t) is
increasing (decreasing ) in t if and only if

Ljn(t) 6 (>)pj(t). (9)

2.1 Parallel system with two components

We consider the special case where the system consists of two components.
Let X and Y be the lifetime of the components having distribution functions F
and G, and survival functions F̄ and Ḡ, respectively. Let

L(t) = Pr(max{X, Y} = X | max{X, Y} 6 t),
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which is the probability that the component with lifetime X causes the failure
of the system, given that the lifetime of the system is less than or equal to t.
We have

L(t) =

∫t
0
G(x)dF(x)

F(t)G(t)
=

∫t
0
G(x)f(x)dx∫t

0
F(x)g(x)dx+

∫t
0
G(x)f(x)dx

, (10)

provided that F(t) > 0 and G(t) > 0 .

The following theorem shows that the behaviour of L(t) is closely related to
the behaviour of ρ(t) = rX(t)/rY(t), where rX(t) and rY(t) are the rhrs of
X and Y respectively.

Theorem 3 Let SL = {t : F(t) > 0,G(t) > 0} and assume that both
F(t) and G(t) are absolutely continuous with respect to t.

1. For all t ∈ SL , if ρ(t) is increasing (decreasing) function of t, then
L(t) is an increasing (decreasing) function of t.

2. For all t ∈ SL , L(t) is independent of t if and only if ρ(t) is independent
of t.

3. L(t) has a peak ( valley) at t∗ > t0 if ρ(t) has a peak ( valley) at t0.

Proof:

1. Note that

L(t) =
ϕ(t)

1+ϕ(t)
, where ϕ(t) =

∫t
0
G(x)f(x)dx∫t
0
F(x)g(x)dx

.

Since the function x/(1 + x) is strictly increasing in x > 0 , it follows
that the monotonicity of L(t) is the same as that of ϕ(t). On the other
hand,

ϕ(t) =

∫t
0
F(x)G(x)rX(x)dx∫t

0
F(x)G(x)rY(x)dx

=

∫t
0
w(x)fm(x)dx∫t

0
(1−w(x))fm(x)dx

,
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where w(x) = ρ(x)/(1+ ρ(x)) and fm(x) = f(x)G(x) + g(x)F(x) is the
density of Fmax{X,Y}(x) = F(x)G(x). Clearly the monotonicity of ρ(x) de-
termines that of w(x). Thus it is enough to show that the monotonicity
of w(x) determines that of ϕ(x). We obtain

ϕ ′(t) =
fm(t)

∫t
0
[w(t) −w(x)]fm(x)dx[∫t

0
(1−w(x))fm(x)dx)

]2 , (11)

which show that ϕ ′(t) > (6)0 depending upon whether w(t) is in-
creasing (decreasing) in t. This concludes the proof of part 1 of the
theorem.

2. Part 2 of the theorem follows from Theorem 1 adapted to the case n = 2
and the definition of ρ(t).

3. To show that part 3 of the theorem is true, assume that w(x) has a
peak (valley) at t0. Then from (11), for all t such that t 6 t0 we have
ϕ ′(t) > (<)0 . On the other hand, for all t such that t > t0 , since
w(t) is decreasing (increasing), it can be shown that the expression∫t
0
fm(x)[w(t) − w(x)]dx in the numerator of (11) is decreasing (in-

creasing) in t. This implies that there exists a value of t∗ > t0 where
ϕ ′(t) changes sign; that is, ϕ(t), and hence L(t), has a peak (valley)
at t∗. This completes the proof of part 3.

♠

Example 4 Let X and Y be distributed as F and G, where

F(t) = 1−
1

1+ 4t2
, t > 0 ,

and
G(t) = 1− e−3t

2

, t > 0 .

Figure 1 shows the plot of ρ(t) and L(t) corresponding to F and G. The plots
show that when ρ(t) is bathtub shape then the corresponding L(t) also has
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Figure 1: The plot of L(t), at left, and the plot of ρ(t), at right, in Example 4.

a bathtub shape. Note also the valley of L(t) is located to the right of that
of ρ(t) as predicted by part 3 of Theorem 3

When X and Y have the same distribution, (10) implies that L(t) = 1/2 . On
the other hand, differentiating (10) with respect to t gives

L ′(t) = [rX(t) + rY(t)][p(t) − L(t)]. (12)

From (12), when L(t) = 1/2 , we have rX(t) = rY(t). Therefore, X and Y have
identical distributions. Motivated by this, we introduce the concept “Y is
stronger than X” in the following definition.

Definition 5 Let X and Y be two non-negative continuous random variables
representing the lifetimes of two components. The component with lifetime Y
is said to be stronger than the component with lifetime X (denoted by X 6sr Y)
if, for all t > 0 , L(t) 6 1/2 .

Theorem 6 If X 6rh Y , then X 6sr Y .
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Proof: From equation (10) we see that X 6sr Y if and only if∫ t
0

G(x)f(x)dx 6
∫ t
0

F(x)g(x)dx . (13)

The assumption that X 6rh Y , implies f(x)G(x) 6 g(x)F(x) for all x > 0 ,
therefore (13) holds and this completes the proof. ♠

The following example indicates that the converse of above theorem is not
true.

Example 7 Let X and Y be distributed exponentially with mean 1 and 0.5
respectively. Then

L(t) =
3(1− e−2t) − 2(1− e−3t)

3(1− e−t)(1− e−2t)
6
1

2
.

On the other hand, rX(0.05) = 19.46 and rY(0.05) = 18.98 . Hence there
exists at least one t such that rX(t) > rY(t) thus violating X 6rh Y .

The following theorem gives a necessary and sufficient condition for X 6sr Y .

Theorem 8 X 6sr Y if and only if F(X) 6mpl F(Y).

Proof: Let Z = F(Y) and W = F(X) and note that W is uniformly dis-
tributed over (0, 1). Denote by mZ(t) the mpl function of Z. Then it follows
after some manipulations that

L(t) =
mZ(F(t))

F(t)
.

Now, X 6sr Y implies that L(t) 6 1/2 for t > 0 which in turn implies
mZ(F(t))/F(t) 6 1/2 or equivalently, mZ(u) 6 u/2 for 0 < u < 1 . Since
mW(u) = u/2 , it follows that F(X) 6mpl F(Y). The converse follows by
reversing the steps of the proof. ♠
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3 Series systems

A system consisting of n components is said to have a series structure if
it operates as long as every component in the system is operating. If Xi,
i = 1, 2, . . . ,n , is the lifetime of component i, then the lifetime of the
series system is T = min16i6n Xi . In this case Ljn(t), the probability that
component j caused the failure of the system, given that the failure time of
the system is less than or equal t, is

Ljn(t) = Pr(X1:n = Xj | X1:n 6 t) =
1

1−
∏n

i=1 F̄i(t)

∫ t
0

n∏
i=1

F̄i(x)hj(x)dx, (14)

where hj(x) = fj(x)/F̄j(x) is the hazard function of Xj.

Some of the results in the parallel components case hold here as well and
we do not repeat them. For example, the following theorem is analogous to
Theorem 2 and the proof is thereby omitted.

Theorem 9 Let hji(t), i = 1, 2 , denote the hazard rate of the jith component
of the system, ji = 1, 2, . . . ,n , If hj1(t) 6 hj2(t), for all t > 0 , then

Lj1n (t) 6 L
j2
n (t).

Consider the special case with two components and let X and Y be the
lifetimes of the components having distribution functions F and G, and
survival functions F̄ = 1− F and Ḡ = 1−G , respectively. Let

L(t) = Pr(min{X, Y} = X | min{X, Y} 6 t) ;

that is, L(t) is the probability that the component with lifetime X causes
the failure of the system, given that the lifetime of the system is less than or
equal to t. Then

L(t) =

∫t
0
Ḡ(x)dF(x)∫t

0
Ḡ(x)dF(x) +

∫t
0
F̄(x)dG(x)

, (15)
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provided that F̄(t) > 0 and Ḡ(t) > 0 . Similar to Theorem 3 one can show that
the behaviour of L(t) is closely related to the behaviour of ρ(t) = hX(t)/hY(t),
where hX(t) and hY(t) denote the hazard rate function of X and Y respectively.

4 Conclusion

We considered an n component system connected in a parallel or series
configuration which can fail prior to time t and studied in detail the probability
that the failure of the system is caused by its jth component, j = 1, 2, . . . ,n .
When the system is parallel, this probability can be used to obtain information
on the probability of failure time of the components of the system. In a series
system it determines the failed component of the system. This probability
is an extension of the probability considered by Cha and Mi [3] and may be
used as an alternative in various areas of reliability applications such as in
general failure models.

In the case of a parallel system with two components, we were able to relate
various stochastic ordering relations such as reversed hazard rates to the
probability that one of the components caused the system failure. Graphs
also display the relationships.

Future research on this topic will extend the case of two components consider
here for parallel systems to more than two components. It will also integrate
other stochastic order relationships discussed by Shaked and Shantikumar [9]
to the particular probability of system failure considered in this article.
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