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Estimating the lifetime of marine concrete
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Abstract

When concrete is exposed to salt water, chloride ions diffuse into
the concrete and cause the reinforcing steel to rust. Industry stan-
dards set the effective lifetime of concrete as the time at which the
chloride ion concentration at the steel surface exceeds some thresh-
old (for example, 0.5% of binder). The problem is to find a lower
bound on the time, for every depth of concrete between the sea and
the underlying steel, so that one can state with, say, 95% confidence
that the concrete lifetime exceeds that bound. Estimation is compli-
cated by the fact that there is only five years of data and we predict
fifty or more years into the future. The solution set forth has two
steps. First, a parametric model is proposed for the concentration
field, based on Fick’s law for diffusion, but modified to allow for a
non-constant diffusion coefficient. Within the concrete industry the
usual modification is an approximate method, but an exact solution
is derived in an appendix. Both the approximate and exact methods
are tested on data. Second, given a depth of concrete, lower confi-
dence bounds on lifetime are estimated by smoothing a parametric
bootstrap of the concentration field over a grid in space-time using
interpolation. Some consistent differences emerge between the exact
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and approximate results, which may have implications for the concrete
industry.
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1 Introduction

Marine grade concrete is used in many civil engineering projects such as
bridges and wharves. However, chloride ions from salt water gradually diffuse
into the concrete. Once these ions reach the reinforcing steel in sufficient
concentration, rust weakens the steel, which can result in catastrophic failure
of the concrete [1].

Rather than measuring the useful lifetime of concrete by the actual time to
failure, industry standards define the effective lifetime of marine concrete as
the time t at which the concentration of chloride ions at the steel exceeds
some level (such as 0.4% or 0.5% of binder). The depth of concrete between
the steel and concrete/water interface is called the ‘cover’, x. Let C(x, t) be
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the chloride ion concentration at depth x and time t. The task addressed in
this article is that of estimating a lower confidence bound time T such that
one can be 95% confident that the concrete lifetime exceeds T . Putting it
another way, we want to be 95% confident that the concentration satisfies
C(x, t) 6 0.5% of binder for time t 6 T .

For the type of concrete examined in our study, we anticipate that T would be
in the range 50–150 years when x = 40mm. However, only five years of data
on C(x, t) were available for this type of concrete, for various combinations
of x and t. It is therefore necessary to extrapolate using a parametric model
for the concentration C(x, t), and then use simulation to obtain confidence
bounds T .

Section 2 describes the deterministic model for C(x, t) in common use by the
concrete industry, as well as a modified version based on further assumptions.
Section 3 introduces the data used in our study, including a discussion of
the uncertainty (errors) for the parameter estimates. In Section 4, values
of C(x, t) are simulated based on the parameter estimates and their error
distributions. In this way the proportion of times that C(x, t) 6 0.5% (say)
of binder are estimated. After some smoothing, interpolation estimates the
confidence bound T for any x, (for example such that there is 95% confidence
that the lifetime exceeds T). Section 5 concludes the study.

2 Parametric model for the concentration

field

Industry models typically start with Fick’s Second Law of Diffusion, which
is a differential equation for the rate of change in concentration:

∂C

∂t
= D

∂2C

∂x2
, (1)
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where D is a constant coefficient of diffusion for the specific type of the
concrete. The differential equation has the well known solution

C(x, t) = Ci + (Csn − Ci) erfc

(
x

2
√
Dt

)
, (2)

where Ci is the initial (background) ion concentration, Csn is the notional
surface concentration, x is the depth in mm and t is the time in seconds.
The complementary error function

erfc(z) =
2√
π

∫∞
z

e−t
2

dt = 2
[
1−Φ(

√
2z)
]

, (3)

where Φ(·) is the cumulative distribution function of the standard Normal
distribution.

However, it is known that D is not constant for concrete. Industry experience
suggests the model D(t) = atn where −1 < n 6 0 . The Fick formula (2) is
therefore commonly modified [3] to

C(x, t) = Ci + (Csn − Ci) erfc

 x

2
√[
Dca(tm) (t/tm)

n ]
t

 , (4)

where Dca(tm) is the apparent Chloride diffusion coefficient at some fixed
base time tm. The term in brackets is a rewritten form of D(t) = atn.
The formula (4) appears to be a de facto industry standard, although other
suggestions have been made [2, 4]. However, the field (4) is no longer strictly
speaking a solution to Fick’s law since (1) becomes

∂C

∂t
= D(t)

∂2C

∂x2
= atn

∂2C

∂x2
, (5)

which is a different differential equation. Its exact solution has been derived
by Graeme Wake (see appendix) as

C(x, t) = Ci + (Csn − Ci) erfc

{√
1+ nx

2
√

[atn]t

}
. (6)
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Both the solutions (4) and (6) revert to the formula in (2) when n = 0 . If
−1 < n < 0 the

√
1+ n term means concentrations are higher, and so the

concrete lifetimes are predicted to be shorter than under the currently used
formula (4).

3 Estimating model parameters and errors

The present study was motivated by the availability of a finer raw mate-
rial for making concrete, which was anticipated to produce concrete with
longer lifetimes. A comparative study of several concrete mixes was carried
out by researchers from branz, the Building Research Association of New
Zealand [5, the data considered in our article are from page 101, table 33,
lower panel]. Two blocks of the specific marine grade concrete were placed
in the splash zone in Wellington harbour. That is, the blocks were not con-
sistently wet, but were splashed with salty water in windy weather, and the
water would then evaporate in dry weather, concentrating the chloride on the
surface of the concrete. After six months a core sample was drilled from each
concrete block, and each sample was analysed for chloride ion concentration
at pre-selected depths. The same procedure was carried out at 12 months,
18 months and 30 months. At 60 months three core samples were analysed.
The observed concentrations are displayed in Figure 1. The pre-selected
depths ranged from 1mm to 37.5mm. Once the sample concentrations were
consistently at or below the usual background level of cloride ions in con-
crete, assumed by concrete industry experience to be 0.01% of concrete or
around 0.06085% of binder, then chemical analysis at deeper depths was
discontinued.

The assumption Ci = 0.06085 was verified for our data using Figure 2 which
plots the square root of the concentration

√
C(x, t) against

√
x, the square

root of the depth. When C(x, t) > Ci , the
√
C(x, t) is related approxi-

mately linearly to
√
x, while for concentrations < Ci the observed

√
C(x, t)

just varies randomly; that is, is unrelated to
√
x. Therefore the industry
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Figure 1: Chloride ion concentration versus depth within concrete, by ex-
perimental replicate, by month and replicate.
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Figure 2: Square root concentration
√
C versus square root depth

√
x.

standard Ci was assumed, and taken to be a fixed constant, known without
error. Both the industry model (4) and the exact model (6) were fitted to
the data in Figure 1, and visually both provided a reasonably good fit except
at the left-hand end of the curves, see Figure 3.

Fitting was performed using Solver in Excel to find Csn, a and n to minimise
the error sum of squares. There was negligible difference in the fitted values,
which means that neither model could be rejected on the basis of these five
years of data. Since the variance of the C(x, t) values seems to greater on the
left than on the right of each curve, fitting was also checked by minimising
a weighted sum of squares with weight proportional to 1/

√
fitted values and

points discarded when C(x, t) < Ci . Again there was insufficient evidence
that either model fitted better for these limited data.

An alternative way of representing the data shown in Figure 1 is to as-
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Figure 3: Observed and fitted concentrations versus depth by the usual
model, plotted by month and replicate (fits using the exact model are simi-
lar).
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Figure 4: Estimated diffusion coefficients versus time, by replicate. Equa-
tion (7) gives the fitted line.

sume the surface concentration of chloride ions Csn can vary with time, and
summarise each curve by a separate estimate of the effective coefficient of
diffusion of Deff, using the model (2). The experimental estimates of Csn at
the five time points were: 2.65, 2.21, 2.33, 2.46 and 3.20% of binder. This
gave a sample mean of 2.55 and sample standard deviation 0.179.

The Deff averaged around 3×10−13 m2s−1 or around 10mm2year−1. Figure 4
shows a fitted line plot of log10(TDeff) versus log10 t where T(tera) = 1012.
The fact that the points vary around a straight line is some justification for
the model D(t) = atn. However, the points are clustered in pairs indicating
the errors around the line are not independent. A similar cluster pattern
was seen for other concrete mixes being studied in the same experiment [5,
p.30], so the clustering is probably related to the weather, for example the
proportion of time during which the blocks were splashed with seawater. To
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correctly model Deff values we need to use a model such as

log10(TDeff,ik) = −0.4352− 0.3115 log10(t) + ei + eik , (7)

where ei is a random effect for time i, and eik is an independent random
effect for replicate k at that time. We obtain estimated standard deviations
sd(ei) = 0.036 and sd(eik) = 0.060 .

One of the Deff figures at month 60 appears considerably lower than the other
two, giving rise to the suspicion that it is erroneous. However, this point is not
an extreme outlier compared to other concrete mixes in the same experiment
and so we have chosen to leave it in the analysis. The danger of removing
an outlier is that we might seriously underestimate the variance and hence
overestimate the 95% lower confidence bound. A referee has suggested a
curve that might be a better fit for these data than a straight line, but a
test for curvature was not statistically significant (P-value = 0.104), so we
proceed with the standard power-law assumption [5, pp.9,39].

4 Obtaining confidence bounds by

simulation

Confidence bounds for the lifetimes were obtained using a parametric boot-
strap as follows. A grid of x and t values was chosen. For each x and t
combination, the uncertainty in Csn was modelled by simulating a value from
the Normal distribution with mean 2.55 and standard deviation 0.179, while
the uncertainty in the value of D(t) was modelled by simulating random
errors ei and eik from the Normal distributions with mean zero and stan-
dard deviations 0.036 and 0.060 respectively and substituting them in (7).
Based on these values, values of C(x, t) were calculated using the industry
standard model (4) and exact model (6). This was carried out 10000 times
for each x and t combination, and the sample proportion of simulations
that gave C(x, t) 6 0.5% was ascertained. Denote this sample proportion
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Table 1: Estimated lifetime T (years) using exact model until
concentration > 0.5% of binder for given cover with confidence Level.

Cover mm 50% 75% 90% 95%
20 17.3 16.3 15.4 14.8
25 29.4 27.0 24.5 22.8
30 49.6 42.8 38.0 35.6
35 77.7 64.9 56.1 51.1
40 114.4 92.9 78.6 71.4
45 161.0 127.9 106.6 95.8
50 218.1 169.9 139.5 124.3

by p̂ = p̂(x, t). For fixed x, some analysis showed that a logit transforma-
tion of the sample proportions gave points that deviated only slowly from a
straight line in time:

log

(
p̂

1− p̂

)
≈ β0 + β1t . (8)

This meant we could use linear interpolation between successive time points
on the grid to obtain an adequate estimate of T corresponding to any desired
confidence levels (such as 95% or 75%). In Figure 5 the circles and solid
line indicate the median time at which C(x, t) = 0.5% of binder, for various
levels of cover x. This is practically the same as the deterministic solution
using Csn = 2.55 and log10(TD) = −0.4352 − 0.3115 log10 t in the exact
model (6). When more confidence is required, the curve moves progressively
towards the left. The triangles indicate the 95% lower confidence bounds,
meaning that for 95% of simulations the C(x, t) 6 0.5% so the lifetime of the
concrete was not exceeded. Numerical values of the confidence bounds are
shown in Table 1 for the exact model. Table 2 shows the corresponding lower
confidence bounds using the industry model (4), and the percentage by which
the lifetime is overestimated compared to the exact model. Calculations
for 0.4% binder are available from the authors.
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Figure 5: lower confidence bounds for concrete lifetimes with given cover,
using 0.5% binder criterion and exact model. The lifetime predicted with
stated confidence level to exceed the bound shown.

Table 2: Estimated lifetime T (years) by usual industry model until
concentration > 0.5% of binder for given cover with confidence level (per-
centage by which lifetime is overestimated compared to exact model).

Cover mm 50% (%) 75% (%) 90% (%) 95% (%)
20 27.5 (59) 22.5 (38) 19.0 (24) 17.2 (16)
25 51.4 (75) 40.0 (48) 33.8 (38) 29.8 (31)
30 87.4 (76) 66.2 (55) 53.1 (40) 47.1 (32)
35 136.6 (76) 99.7 (54) 78.6 (40) 68.6 (34)
40 199.4 (74) 143.7 (55) 110.2 (40) 95.7 (34)
45 279.5 (74) 197.6 (55) 149.4 (40) 128.1 (34)
50 378.0 (73) 261.0 (54) 195.7 (40) 166.5 (34)



5 Discussion C421

5 Discussion

By comparison with the exact model, the numerical results suggest that the
usual formula (4) has a risk of overstating the effective lifetime of concrete,
by over 70% for median lifetime and over 30% at the 95% lower confidence
bound. On the other hand the exact model relies on the specific functional
form of D(t) being correct and our experimental data are from a very short
time scale. Therefore it is not yet possible to tell on purely pragmatic grounds
which of the two models (the standard model with its ad hoc modification,
or the exact model) will give the most accurate prediction for real concrete.

The scientific contribution of this article is that it derives a new formula
for concrete industry researchers to use, and also illustrates how one can
use the uncertainty in the parameter estimates to simulate concentration
values C(x, t) and thereby obtain lower confidence bounds for the concrete
lifetimes.

Acknowledgements The data illustrated in this article were provided by
the Building Research Association of New Zealand.

A Proof of exact formula

In what follows it is convenient to reparameterize D(t) = atn as D0 (t0/t)
α

where t0 is some reference time, α = −n (so 0 6 α < 1) and a = D0t
α
0 .

Fick’s differential equation (5) therefore becomes

∂C

∂t
= D0

(
t0

t

)α
∂2C

∂x2
, where x > 0 and t > 0 . (9)

We need three initial conditions as follows. First, for any depth x > 0 the
concentration at time zero is assumed to be zero; that is, C(x, 0) = 0 (strictly
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speaking the differential equation is modelling the additional ions in excess of
any background concentration Ci). Second, the concentration at the surface
x = 0 is assumed to be constant, independent of time. This is not exactly
true in our study, but neither is Csn related to t in any way that can be
included in the differential equation: rather it is taken to vary randomly
around its mean. Third, for any given time t, the concentration at depth x,
C(x, t)→ 0 as x→∞ (the deeper the ions, the fewer).

Now try a transformed variable z = t−βx for some unknown β to be found,
and we write C(x, t) = f(z) as a similarity solution. Now

∂2C

∂x2
= t−2βf ′′(z) and

∂C

∂t
= −βt−β−1xf ′(z). (10)

Therefore the diffusion model becomes

− βt−β−1xf ′(z) = D0

(
t0

t

)α
t−2βf ′′(z) (11)

and hence

D0t
α
0 f

′′(z) = −βxt−β−1+2β+αf ′(z) = −βtα+2β−1
(
xt−β

)
f ′(z) = −βzf ′(z)

(12)
provided that we choose α+ 2β− 1 = 0 . This implies β = (1− α)/2 which
is > 0 as expected (compare the classical solution with α = 0). So the
solution satisfies D0t

α
0 f

′′(z) = −βzf ′(z), which implies

f ′′(z) =

(
−β

D0t
α
0

)
zf ′(z), and hence f ′(z) = A exp

(
−β

D0t
α
0

z2

2

)
, (13)

where A is some constant. Hence

f(z) = (−A)

∫∞
u=z

exp

(
−β

D0t
α
0

u2

2

)
du+ B , (14)

where u is a dummy variable of integration and B is an integration constant.
Using a change of variables w =

√
2D0t

α
0/βu one obtains erfc(w) and hence

C(x, t) = f(z) = (Csn − Ci) erfc

( √
βz√
2D0t

α
0

)
+ Ci (15)
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after relabelling the constants in terms of the chloride concentrations Csn

and Ci. Finally, (6) follows after substituting β = (1−α)/2 = (1+n)/2 and

z = x/tβ = x/
√
t1+n .
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