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Semi-analytical solution of Poisson’s equation
in bounded domain
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Abstract

Poisson’s equation is very important in electrostatics, mechani-
cal engineering and theoretical physics. The novel semi-analytical,
scaled boundary finite element method (sbfem), is applied to solve
Poisson’s equation with Dirichlet and Neumann boundary conditions
in the bounded domain. The sbfem weakens the governing differen-
tial equation in the circumferential direction and solves the weakened
equation analytically in the radial direction, combining the advantages
of the finite element method and the boundary element method. Three
examples demonstrate the excellent computational accuracy and effi-
ciency of the sbfem approach, revealing the great potential of this
method to solve more complex engineering problems.
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1 Introduction

Poisson’s equation has many applications in electrostatics, mechanical engi-
neering and theoretical physics. For example, the numerical solution of the
incompressible Navier–Stokes equations involves solving the pressure Pois-
son’s equation. Physical problems governed by the two dimensional Pois-
son’s equation are often in a rectangular or circular domain, with Dirichlet,
Neumann or mixed boundary conditions.

Poisson’s equation is usually solved by some discretisation techniques such as
the boundary element method (bem) and the finite element method (fem).
bem has the inherent advantage for problems in the unbounded domain with
the property of reducing the spatial dimension by one. However, fundamental
solutions are required and singular integrals exist. Furthermore, it suffers
from the problems caused by irregular frequencies and sharp corners. On the
other hand, fem has a great advantage of a wide variety of element types.
However, an associated boundary condition or an infinite element technique
has to be introduced for problems in the unbounded domain. For three
dimensional problems in the unbounded domain, the whole computation cost
is much larger compared to bem.
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Recently, a new semi-analytical method, namely the scaled boundary finite
element method (sbfem) has been successfully applied to soil-structure in-
teraction, combining the advantages of both fem and bem [9]. The method
only discretises the body boundary surface with finite elements, then trans-
forms the governing partial differential equations to ordinary matrix differ-
ential equations in the radial direction which are then solved analytically.
The method is more suitable for handling problems with singularities and is
more efficient for solving problems of unbounded domains compared to fem.
Unlike bem, it does not require a fundamental solution and is free from the
irregular frequency difficulty. Fewer elements are needed to obtain a very
accurate solution.

The sbfem was first proposed to solve problems in soil-structure interaction
by Song and Wolf [5], and later was applied to a variety of engineering fields.
For example, Ekevid and Wiberg [2] analysed wave propagation related to
moving loads in railway engineering by the combination of sbfem and fem.
The dynamical response of a railroad section demonstrated the performance
of the method. Teng et al. [8] simulated the water sloshing in a rectangu-
lar water container by sbfem, finding that the sbfem method gives much
better results than the fem method for the same mesh size. Li et al. [4] ob-
tained a semi-analytical solution for the characteristics of a two dimensional
dam-reservoir system with an absorptive reservoir bottom, in the frequency
domain, by coupling sbfem and fem. Tao et al. [7] solved the problem of
short-crested waves diffracted by a vertical circular cylinder using sbfem,
demonstrating high accuracy and efficiency in the unbounded domain. This
was achieved with a small number of surface finite elements. Recently their
solution was extended to water wave interaction with multiple cylinders of
arbitrary shape [6].

A two dimensional Poisson’s equation with Dirichlet and Neumann boundary
conditions in a bounded domain is solved by sbfem. Discretising only the
boundary with surface finite elements, the current sbfem model exhibits
excellent computational accuracy and efficiency. sbfem agrees well with
analytical results and is obtained with low computational cost.
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2 Theoretical consideration

2.1 Governing equations

The two dimensional Poisson’s equation in the following is the famous elliptic
partial differential equation

∇2φ(x,y) = −f(x,y) , in Ω , (1)

where ∇ is the Laplacian, φ(x,y) is the function to be solved, f(x,y) is
a known function, and Ω is the solution domain. Defining the Dirichlet
boundary and Neumann boundary as Γφ and Γv respectively, we have

φ = φ̄ , on Γφ , (2)

φ,n = φ̄n , on Γv , (3)

where the overbar denotes a prescribed value, and a comma in the subscript
designates the partial derivative with respect to the variable following the
comma.

2.2 Scaled boundary finite element transformation

The finite element method requires the weighted residuals of the governing
equation to be zero. Hence Equations (1), (2) and (3) are multiplied by
a weighting function w and integrated over the solution domain and the
boundary. Performing integration by parts, the resulting equation becomes∫

Ω

∇Tw∇φdΩ−

∫
Ω

wfdΩ−

∮
Γv

wφ̄n dΓ = 0 . (4)

sbfem defines the solution domain Ω by scaling a single piecewise smooth
curve S relative to a scaling centre (x0,y0) (see Figure 1). The circumferential
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Figure 1: Definition of the coordinate system (s, ξ) for sbfem.

coordinate s is anticlockwise along the curve S and the normalised radial
coordinate ξ is a scaling factor, defined as 1 at curve S and 0 at the scaling
centre. The whole solution domain Ω is in the range of ξ0 6 ξ 6 ξ1 and
s0 6 s 6 s1 . The two straight sections s = s0 and s = s1 are called side faces.
They coincide when the curve S is closed. For bounded domain, ξ0 = 0 and
ξ1 = 1 ; whereas, for unbounded domain, ξ0 = 1 and ξ1 = ∞ . Therefore
Cartesian coordinates are transformed to the scaled boundary coordinate ξ
and s with the scaling equations

x = x0 + ξxs(s) , y = y0 + ξys(s) . (5)

By employing sbfem, an approximate solution of φ is sought as

φA(ξ, s) =N(s)a(ξ) , (6)
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where N(s) is the shape function, the vector a(ξ) is analogous to the nodal
values, the same as in fem. The radial function aj(ξ) represents the varia-
tion of φ in the radial axis ξ at each node j, and the shape function N(s)
interpolates between the nodal values in the circumferential axis s.

By performing the scaled boundary transformation [9], the operator

∇ = b1(s)
∂

∂ξ
+
1

ξ
b2(s)

∂

∂s
, (7)

where b1(s) and b2(s) depend only on the boundary

b1(s) =
1

|J|

{
ys(s),s
−xs(s),s

}
, b2(s) =

1

|J|

{
−ys(s)
xs(s)

}
, (8)

and |J| is the Jacobian at the boundary

|J| = xs(s)ys(s),s − ys(s)xs(s),s . (9)

Applying the Galerkin approach [9], the weighting function w is formulated
using the same shape function as in Equation (6):

w(ξ, s) =N(s)w(ξ) = w(ξ)TN(s)T . (10)

Substituting Equations (6), (7), and (10) into Equation (4) and integrating
the terms containing w(ξ),ξ by parts with respect to ξ using Green’s theorem
leads to

q(ξ1) =

∫
S

N(s)T(v̄n(ξ1, s))ξ1 ds , (11)

q(ξ0) = −

∫
S

N(s)T(v̄n(ξ0, s))ξ0 ds , (12)

E0ξ
2a(ξ),ξξ + (E0 +E

T
1 −E1)ξa(ξ),ξ −E2a(ξ) + ξ

2Fb = ξFs(ξ) , (13)

where

dΩ = |J|ξdξds , q(ξ) = E0ξa(ξ),ξ +E
T
1a(ξ) , (14)
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B1(s) = b1(s)N(s) , B2(s) = b2(s)N(s),s , (15)

E0 =

∫
S

B1(s)
TB1(s)|J|ds , E1 =

∫
S

B2(s)
TB1(s)|J|ds , (16)

E2 =

∫
S

B2(s)
TB2(s)|J|ds , Fb =

∫
S

N Tf|J|ds , (17)

Fs(ξ) =N(s0)
T(−v̄n(ξ, s0))|J(s0)|

+N(s1)
T(−v̄n(ξ, s1))|J(s1)| . (18)

Equation (13) is the scaled boundary finite element equation. By introduc-
ing the shape function, Poisson’s equation has been weakened in the cir-
cumferential direction, so that the governing partial differential equation is
transformed to an ordinary matrix differential equation in the radial direc-
tion. The rank of matrices E0, E1, E2 and vector a(ξ) is m (where m is
the number of nodes in the curve S). The nonzero term Fb is caused by
the nonhomogeneous term f(x,y) in Equation (1), leading to the final gov-
erning equation Equation (13) becoming non-homogeneous. The presence of
such a non-homogeneous term in the governing equation makes the solution
procedure much more complicated than that of Tao et al. [7].

Boundary conditions are weakened in the form of Equations (11) and (12)
respectively. For the boundary value problem in the unbounded region, ξ0 =
1 on the boundary and ξ1 = +∞ at infinity. For the boundary value problem
in the bounded region, ξ0 = 0 and ξ1 = 1 .

3 Solution procedure

The following procedure is rather different from earlier work of Tao et al. [7]
due to the non-homogeneous term caused by the term f(x,y) in Poisson’s
equation (1). However, the solution remains semi-analytical and fundamental-
solution-less in the following solution procedure, which is superior to many
other numerical methods.
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Define

X(ξ) =

{
a(ξ)
q(ξ)

}
, (19)

F (ξ) =

{
0

ξ2Fb(ξ) − ξFs(ξ)

}
, (20)

Z =

[
E−1
0 E

T
1 −E−1

0

−E2 +E1E
−1
0 E

T
1 −E1E

−1
0

]
. (21)

Equation (13) is written as

ζX(ξ),ξ = −ZX(ξ) − F (ξ) . (22)

The Hamiltonian matrixZ consists of two groups with opposite sign eigenval-
ues, Λ0 and −Λ0 [9]. The real parts of eigenvalues in Λ0 are all nonnegative.

The eigenvalue problem is formulated as

ZJ = −JΛ . (23)

Similar to previous research [5, 9], the analytical solution of Equation (22) is
expressed as

a(ξ) = J11ξ
−Λ0C1(ξ) + J12ξ

Λ0C2(ξ) , (24)

q(ξ) = J21ξ
−Λ0C1(ξ) + J22ξ

Λ0C2(ξ) , (25)

where

C1(ξ) = c1 −

∫ ξ
1

ζ · ζΛ0A12Fb dξ , (26)

C2(ξ) = c2 −

∫ ξ
1

ζ · ζ−Λ0A22Fb dξ , (27)

J =

[
J11 J12
J21 J22

]
, A = J−1 =

[
A11 A12

A21 A22

]
, (28)
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and c1 and c2 are integration constants.

For the problem of a bounded domain, φ(ξ) at ξ = 0 must remain finite,
leading to C2(ξ)|ξ=0 = 0 , then

c2 =

∫ 0
1

ζ · ζ−Λ0A22Fbdξ , (29)

C2(ξ) = −

∫ ξ
0

ζ · ζ−Λ0A22Fbdξ , (30)

a(ξ) = J11ξ
−Λ0

(
c1 +

∫ 1
ξ

ζ−1ζΛ0A12Fbdξ

)
− J12ξ

Λ0

∫ ξ
0

ζ−1ζ−Λ0A22Fbdξ , (31)

c1 is determined by the boundary condition at ξ = 1

a(ξ)|ξ=1 = J11c1 − J12

∫ 1
0

ζ−1ζ−Λ0A22Fbdξ , (32)

q(ξ)|ξ=1 = J21c1 − J22

∫ 1
0

ζ−1ζ−Λ0A22Fb dξ , (33)

For the problem of the unbounded domain, the solution procedure is similar.

4 Result and discussion

Three examples were calculated to demonstrate the excellent computational
accuracy and efficiency of the proposed sbfem approach. The first example
is the well known ‘Kirchoff vortices’ [3]. A Kirchoff vortex is an ellipse of
constant vorticity ω, with major axis 2a, minor axis 2b. The rotation of the
major axis of the ellipse is due to the phase speed of the perturbation along
the vortex contour and to the advection by the mean azimuthal velocity of
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Figure 2: Kirchoff vortex
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Figure 3: Scaled boundary finite element mesh for Example 1.

the vortex (see Figure 2). A Kirchoff ellipse is stable for b/a > 1/3 [1]. For
simplicity, we choose b = a in this paper, and the vortex is centered at the
origin (x0,y0). So, φ(x,y) in Equation (1) is the stream function and f(x,y)
in Equation (1) is the vorticity ω in this case. The scaling centre is also
chosen at the origin, and the body boundary is discretised with three node
quadratic elements along the circumference. Due to the symmetry of the
physical problem, only a quarter of the boundary needs to be discretised.

Table 1 shows the values of nondimensional normal derivative of the stream-
function φ,n/(ωa) on the boundary, calculated using the sbfem, where the
Dirichlet boundary condition was given as φ̄ = −ωa2/4 on the edge of the
ellipse. As shown in the table, even one element obtains the same result as
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Table 1: Nondimensional normal derivative of the streamfunction on the
edge of the ellipse.

φ,n/(ωa)
1 element −0.5000000
2 element −0.5000000
3 element −0.5000000
Exact −0.5

Table 2: Nondimensional streamfunction φ/(ωa2) at different locations.
r/a 1/4 1/3 1/2 2/3 3/4

1 element −0.015625 −0.027778 −0.062500 −0.111111 −0.140625
2 element −0.015625 −0.027778 −0.062500 −0.111111 −0.140625
3 element −0.015625 −0.027778 −0.062500 −0.111111 −0.140625
Exact −0.015625 −0.027778 −0.0625 −0.111111 −0.140625

the exact analytical solution. Table 2 lists the nondimensional stream func-
tion φ/(ωa2), calculated at different locations within the bounded domain
r/a = 1/4, 1/3, 1/2, 2/3 and 3/4. Excellent agreement is achieved with only
one element. This demonstrates the superiority of sbfem.

The second example is in a bounded square region 0 6 x,y 6 1 . The
nonhomogeneous term f(x,y) = 2x3−6xy(1−y) and the boundary conditions
are the Dirichlet boundary conditions

φ(0,y) = 0 ,

φ(1,y) = y(1− y),

φ(x, 0) = 0 ,

φ(x, 1) = 0 .

(34)

The problem has the exact solution φ(x,y) = x3y(1− y).

Figure 5 compares the sbfem result and the analytical solution for Exam-
ple 2. With only 16 three node quadratic elements along one side (33 nodes in
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Figure 4: Scaled boundary finite element mesh for Examples 2 and 3 .

one side), the method achieved very good agreement with the analytical solu-
tion, while more elements are required for traditional discretisation method
such as finite difference methods. Due to the symmetry of the problem, only
half of the circumference needs to be discretised (see Figure 4).

The third example is also in a square region 0 6 x,y 6 1 . The nonhomoge-
neous term f(x,y) = 2(2y3 − 3y2 + 1) + 6(1− x2)(1− 2y) and the boundary
conditions are the mixed boundary conditions

φ(0,y) = 2y3 − 3y2 + 1 ,

φ(1,y) = 0 ,

φy(x, 0) = 0 ,

φy(x, 1) = 0 .

(35)

The exact solution of the problem is φ(x,y) = (1− x2)(2y3 − 3y2 + 1).

Figure 6 compares the sbfem result and the analytical solution for Exam-
ple 3. Again, the figure shows that sbfem results agree with the analytical
solution at a very low computational cost. The discretisation is shown in
Figure 4 as well.
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Figure 5: Comparison of the sbfem result and the analytical solution for
Example 2.
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Figure 6: Comparison of the sbfem result and the analytical solution for
Example 3.
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As solving the pressure Poisson’s equation is the most time consuming task
in viscous fluid solvers, the application of sbfem in solving Poisson’s equa-
tion will improve significantly computational efficiency and accuracy due to
its semi-analytic nature. The methodology and theoretical approach pre-
sented in this article is an important step and will significantly reduce the
computational cost of solving problems in viscous flow.

5 Conclusion

The semi-analytical scaled boundary finite element method is further ex-
tended and successfully applied to solve Poisson’s equation with Dirichlet
and Neumann boundary conditions in bounded domain. Excellent agreement
between the present sbfem results and the analytical solutions are achieved
at a very low computational cost, demonstrating significant computational
accuracy and efficiency—a distinct advantage over the existing methods for
engineering problems. As many of the problems in ocean engineering are gov-
erned by Laplace’s equation and Poisson’s equation, the method presented
in this article could lead to direct engineering applications.
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