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Study on control of bird flu outbreak within a
poultry farm
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Abstract

In a production process of a poultry farm, the entire population
of birds is kept constant at the manageable capacity. After intrusion
of influenza virus, infected birds remain as a source of infection re-
gardless of being alive or dead, unless they are completely removed.
A mathematical model based on these factors is analysed to study
time evolution of populations of susceptible birds and infected birds,
and concentration of bird flu virus. Numerical results show that the
population of domestic birds can be made secure against infection by
proper vaccination and proper removal of infected birds.
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1 Introduction

Since outbreaks of bird flu (avian influenza) spread widely in 2003, poultry
farms have always been under constant threat of loss due to the disease. The
disease originates from virulence produced by influenza virus h5n1 carried
by wild birds. Unlike wild birds, infection of domestic birds causes serious
symptoms that eventually lead to death. Primary factors for outbreak of bird
flu include existence of avian influenza virus as source of disease, poultry as
host, and environment as medium, and are likely to provide opportunities for
infection under inappropriate supervision of a poultry farm. Vaccination is
an effective measure to reduce the risk of infection both for humans and for
domestic animals [1].

A mathematical model consisting of ordinary differential equations has been
proposed and analysed to determine time evolution of populations of suscep-
tible birds and infected birds. In a production process on a poultry farm, the
entire population of birds is kept constant at the manageable capacity by
supply of new healthy birds when vacancies are created, or by shipping of
healthy birds when the entire population exceeds the capacity. After intrusion
of influenza virus, some of infected birds stay alive and others die. However,
infected birds remain as a source of infection regardless of being alive or
dead, unless they are completely removed from the entire population. Our
mathematical model is based on these factors. Analysis based on the model
shows that the population of domestic birds can be made secure against
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infection by proper vaccination and proper removal of infected birds. Analysis
also shows that the population cannot be made secure by vaccination alone,
and that security can be achieved by removal of infected birds alone without
vaccination [5].

The mathematical model is extended to cover time evolution of populations of
susceptible birds and infected birds, and concentration of bird flu virus. The
model is numerically analysed to simulate evolution of the populations for
various parameter values and to propose a control strategy against outbreak
of bird flu within a poultry farm.

2 Modeling bird flu infection in a poultry

farm

Contamination of a poultry farm with bird flu divides the population of
domestic birds into two classes: the class of healthy birds susceptible to
infection; and the class of infected birds. The si model

dx

dt
= c− bx−ωxy and

dy

dt
= ωxy− (b+m)y , (1)

is analysed to study evolution of the population of susceptible birds x and the
population of infected birds y as a part of avian-human influenza model [3].
Here parameter c is the rate at which new birds are born, parameter b is the
death rate for susceptible birds and infected birds, and parameter m is the
additional death rate for infected birds. The term ωxy denotes the number
of susceptible birds infected per unit time, and is proportional to the number
of susceptible birds x and the number of infected birds y. Equation (1) is
called the si model because s and i stand for susceptible birds and infected
birds, respectively, and x and y are the populations of susceptible birds and
infected birds, respectively.

The model (1) is not adequate for closed systems such as poultry farms. In
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a poultry production process in a farm, the entire population of domestic
birds is balanced with the capacity of the farm by shipping of healthy birds
when the entire population exceeds the capacity, and by supply of new birds
when vacancies are created by shipping of healthy birds or death of healthy or
infected birds. The first two terms on the right hand side of the equation (1)
are replaced with a {c− (x+ y)}. Parameter c denotes the capacity of the
farm, and parameter a denotes the time rate of supply. All the infected
domestic birds eventually die from the disease. Some infected birds die of
the disease almost immediately and others stay alive longer, but regardless
of being alive or dead, infected birds remain as sources of infection unless
they are removed from the population. The rate of removal of infected birds
is proportional to the population of infected birds, and so the second term
in the right hand side of the equation (1) is replaced with −my, where m is
the removal rate. The foregoing discussion leads to the following system of
differential equations [5]:

dx

dt
= a {c− (x+ y)}−ωxy and

dy

dt
= ωxy−my , (2)

where c, ω and m are positive parameters.

Stationary points of system (2) are constant solutions which make the right-
hand sides equal to zero. The equation ωxy−my = 0 implies that either x =
m/ω or y = 0 . Then the stationary points of (2) are found by substituting
these expressions into a {c− (x+ y)} −ωxy . One stationary point of the
system (2) is

(x,y) = (c, 0) , (3)

which corresponds to the state free of infection. Another stationary point of
the system (2) is

(x,y) =

(
m

ω
,
a (cω−m)

ω (a+m)

)
. (4)

The y component of the stationary point (4) is positive if and only if

cω−m > 0 . (5)
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The stationary point (4) is practically significant under the condition (5),
while it is practically insignificant under the condition cω −m < 0 . It is
desirable that the stationary point (3) is stable in the sense that the state
always returns to the original state after change due to intrusion of bird flu.
It is shown that stationary point (3) is unstable under the condition (5),
and that it is asymptotically stable under the condition cω −m < 0 . It
is also shown that stationary point (4) is asymptotically stable under the
condition (5), and that it is unstable under the condition cω −m < 0 [5].
The stability of a stationary point (x,y) = (ξ,η) of the system (2) depends
on the eigenvalues of the Jacobian matrix

A =

[
−(a+ωη) − (a+ωξ)

ωη ωξ−m

]
.

The stationary point is asymptotically stable when all the eigenvalues of A
have negative real parts, and unstable when at least one eigenvalue has a
positive real part [2]. Let λ− and λ+ be the eigenvalues of A. Then

λ± =
trA

2
±

√
(trA)2 − 4 detA

2
(6)

where trA = −(a+ωη) +ωξ−m , (7)

and detA = −(a+ωη) (ωξ−m) +ωη (a+ωξ) . (8)

The steady state solution is asymptotically stable for trA < 0 and detA > 0 .
For the stationary point (3), equations (6)–(8) lead to

λ− = −a , λ+ = ωc−m .

Under the condition (5), the stationary point (3) is unstable. Under the
condition cω−m < 0 , the stationary point is asymptotically stable.

For the stationary point (4), equations (7) and (8) become

trA = −
a (a+ cω)

a+m
< 0 , detA = a (cω−m) .
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Under the condition (5), detA > 0 , and the stationary point (4) is asymptot-
ically stable. It is unstable under the condition detA < 0 .

In order to propose effective measures against outbreaks of bird flu, it is
important to grasp temporal and spatial distribution of virus concentra-
tion. However, systems (1) and (2) provide no information concerning virus
concentration. Note that the time rate of increase of virus concentration
is proportional to itself. Decrease of susceptible birds due to infection is
proportional to the population of susceptible birds, and it is also proportional
to the virus concentration. Decreased amount of susceptible birds due to
infection is the increased amount of infected birds. The rate of increase in
virus concentration is controlled by the population of infected birds as hosts.
It is positive when the virus concentration falls below the capacity of the
hosts, and it becomes negative when the virus population exceeds the capacity
of the hosts.

Let x, y and z be the population of susceptible birds, the population of
infected birds, and virus concentration, respectively. In production processes
of poultry farms, the total population x+ y is maintained at the capacity of
the farm c. Healthy susceptible birds are supplied when vacancies are created
(c− (x+ y) > 0), and the increasing rate due to vacancies is a {c− (x+ y)},
where a is a positive constant. Susceptible birds becomes infected birds when
they are infected. The number of susceptible birds infected per unit time is
proportional to the virus concentration in the medium. It is also proportional
to the number of susceptible birds. The decreasing rate of susceptible birds
due to infection is σxz, where σ is a positive constant. The time rate of change
in the number of susceptible birds is the difference between the increasing
rate and the decreasing rate, and

dx

dt
= a {c− (x+ y)}+ σxz .

The decreasing rate of the susceptible birds due to infection is the increasing
rate of infected birds, and the number of infected birds removed from the
entire population is proportional to the number of infected birds, which leads
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to
dy

dt
= σxz−my .

Infected birds are hosts of influenza virus, and the increasing rate of the virus
concentration is proportional to the number of infected birds, and decreasing
rate of virus is proportional to the virus concentration, which leads to

dz

dt
= py− qz .

Let r = q/p and ω = σ/r . The system of equations

dx

dt
= a {c− (x+ y)}−ωrxz ,

dy

dt
= ωrxz−my ,

dz

dt
= p (y− rz) . (9)

governs the time evolution of the population of susceptible birds, the popula-
tion of infected birds, and the virus concentration [6].

3 Dominant states of bird flu infection

model

Stationary points of the system (9) are constant solutions, obtained by setting
the right-hand sides equal to 0. Let (ξ,η, ζ) be a stationary point of the
system (9). The stability of (ξ,η, ζ) is determined by the eigenvalues λ1, λ2
and λ3 of the Jacobian matrix

A (a,p, r,ω, ξ, ζ) =

−(a+ rωζ) −a −rωξ
rωζ −m rωξ

0 p −pr

 .
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The stationary point (ξ,η, ζ) is asymptotically stable when the real parts
of λ1, λ2 and λ3 are all negative [2], and it is unstable when at least one of
the eigenvalues has positive real part.

There are two stationary points of system (9). One stationary point is

(x,y, z) = (c, 0, 0) , (10)

and the other is

(x,y, z) =

(
m

ω
,
a (cω−m)

ω (a+m)
,
a (cω−m)

rω (a+m)

)
. (11)

Note that the y component and z component of stationary point (11) are
positive, and that the stationary point is practically significant if and only if
the condition (5) holds. For m = 0 , stationary point (11) is

(x,y, z) =
(
0, c,

c

r

)
, (12)

which coincides with the stationary point (10) for m = cω . As m increases
from 0 to cω, stationary point (11) moves on a curve connecting the points (12)
and (10).

For the stationary point (10), the eigenvalues of the matrix A are

λ1 = −a

λ2 = −
m+ pr

2
−

√
(m− pr)

2
+ 4prωc

2

λ3 = −
m+ pr

2
+

√
(m− pr)

2
+ 4prωc

2

All the eigenvalues are real. For 0 6 m < ωc , λ1 and λ2 are negative, but
λ3 is positive, and the stationary point (10) is unstable. For m > ωc , all
the eigenvalues are negative and the stationary point (10) is asymptotically
stable.
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The eigenvalues of A = A (a,p, r,ω, ξ, ζ) associated with the stationary
point (11) have been evaluated for the special case a = pr . In this case, the
eigenvalues λ1, λ2 and λ3 of A are

λ1 = −a , λ2 = −(a+m) , λ3 = −
a

a+m
(cω−m) .

For 0 6 m < ωc , all the eigenvalues are negative and the stationary point (11)
is asymptotically stable. For m > ωc , λ1 and λ2 are negative, but λ3 is
positive, and the stationary point (11) is unstable.

The results concerning the stability of the stationary points indicate that the
stationary point (11) is asymptotically stable when it is practically significant
(cω −m > 0), and that the stationary point (10) becomes asymptotically
unstable when the stationary point (11) becomes practically insignificant
(cω−m < 0).

4 Numerical results based on bird flu

infection model

System (9) was solved numerically for 100 initial values

x = i× 0.5 , y = j× 0.5 , z = k× 0.5 ,

for i, j,k = 0 , 1, 2, 3 and 4 using the fourth order Adams–Bashforth–Moulton
predictor-corrector in pece mode in conjunction with the Runge–Kutta
Method to generate values of approximate solution at the first three steps [4].
Here numerical results were obtained for m = l × 0.25 , l = 0, 1, . . . , 20 [6],
and with time step 0.001 for 2, 000, 000 steps. Figures 1–3 show the stationary
points (10) and (11), and the numerical solutions for a = 1 , c = 1 , ω = 2 ,
p = 1 , and q = 1 , and for three different values of m: m = 1.75 , m = 2.0
and m = 2.25 . For 0 6 m < 2.0 , all the numerical solutions terminated in
the sphere of radius 10−6 centered at the stationary point (11), which confirms
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Figure 1: Stationary points and trajectories for a = 1 , c = 1 , ω = 2 ,
m = 1.75 , p = 1 , q = 1 .

that the stationary point (11) is asymptotically stable for those values of m.
For 2.0 < m 6 5.0 , all the numerical solutions terminated in the sphere of
radius 10−6 centered at the stationary point (10), which confirms that the
stationary point (10) is asymptotically stable for those values of m.
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Figure 2: Stationary points and trajectories for a = 1 , c = 1 , ω = 2 ,
m = 2.0 , p = 1 , q = 1 .
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Figure 3: Stationary points and trajectories for a = 1 , c = 1 , ω = 2 ,
m = 2.25 , p = 1 , q = 1 .
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5 Discussion

Recall that m denotes the removal rate of infected birds, and the state of no
infection (x,y, z) = (c, 0, 0) is asymptotically stable for all sufficiently large
values of m. Our analysis based on the model (9) shows that outbreak can be
prevented by proper removal of infected birds, and removal of infected birds
is essential for prevention of outbreak within a poultry farm as is shown in
analysis of the previous model.

In practice, spot-checks are conducted to detect infection by the h5n1 virus.
Some birds are taken randomly from a flock, and if one bird is found positive
for infection, all the birds in the farm are disposed. This current management
practice is not consistent with our model.

In order to make our proposed management procedure practicable, it is
necessary to develop a detection system to cover the entire population in an
appropriate time span for proper removal of infected birds. If that can be
achieved, our results show that it will only be necessary to dispose of infected
birds, not all the birds in the farm.
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