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Abstract

We formulate and investigate a uniformly distributed mathemat-
ical model (based upon Semenov’s theory for thermal explosions) for
the thermal response of cellulosic materials in compost piles. The
model consists of a mass balance equation for oxygen, a heat balance
equation, and incorporates the heat release due to biological activity
within the pile. Biological heat generation is known to be present in
most industrial processes handling large volumes of bulk organic mate-
rials. We utilise singularity theory to investigate the generic properties
of the model, as well as to determine the locus of different singulari-
ties, namely the cusp, isola and double limit point. Singularity theory
provides a useful tool to systematically analyse this system. We inves-
tigate the conditions where biological activity results in the initiation
of an elevated temperature branch within the compost pile.
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1 Introduction

The phenomena of spontaneous ignition due to internal heating in bulk solids,
such as coal, grain, hay, and wool wastes, can by described by thermal ex-
plosion theory as developed by Semenov and Frank–Kamenetskii [2, 4]. In
these models heat release is represented by a single Arrhenius reaction and
combustion is initiated when heat loss is unable to balance heat generation.

We consider a simple model for the thermal behaviour of compost heaps when
self-heating is entirely due to the presence of micro-organisms or microbes
undergoing oxidative exothermic reactions. This is a constructive first step
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to understand the thermal behaviour of compost heaps when self-heating is
due to a combination of low temperature heating effects, from the biomass,
and higher temperature effects, from the oxidation of cellulosic material; the
behaviour of the model when self-heating is entirely due to cellulosic oxidation
is well known [2].

Low temperature self-heating due to the action of biomass is present in any
industrial processes handling large volumes of bulk organic materials. It is
due to the growth and respiration of micro-organisms such as aerobic mould
fungi and bacteria. Examples of such processes include the use of large scale
composting operations as a significant biorecycle process [15], the storage of
industrial waste fuel, such as municipal solid waste (msw) [6], and landfills.
Although msw does not seem an obvious source of combustible materials,
in one set of experiments, approximately 85 percent of industrial waste was
deemed to be combustible [6]. In these systems, temperature increases due to
biological activity is an inherent consequence of the process and normally a
goal, for example in composting. Elevated temperature of the order 70–90◦C
may be found within a few months or even a few days according to Hogland
et al. [6].

Although it is recognised for over twenty years that “. . . biological heating
may be an indispensable prelude to self ignition. . . ” [2], very little informa-
tion is available regarding the mechanism of fires when biological self-heating
is involved. An understanding of this phenomenon is crucial as fires (most
likely due to biological self-heating) are common at landfills worldwide [7].
Furthermore, spontaneous combustion may be the most frequent cause of
fires at compost facilities [15].

We model the heat release rate due to biological activity as a function which
exhibits two types of behaviour: over the temperature range 0 < T < a it
is a monotonic increasing function of temperature, whereas for T > a it is
a monotonic decreasing function of temperature. This functionality reflects
that micro-organisms die or become dormant at high temperatures. In prac-
tice, there is not a unique microbe responsible for heat generation in compost
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pile, but rather many different species which thrive over a sequence of over-
lapping temperature intervals [9]. The temperature varying active biomass
concentration is incorporated into the model through the chosen functional-
ity for the biological heat release rate. In an earlier Semenov-type model for
self-heating in compost piles it was assumed that biological heat release is
independent of the oxygen concentration; that is, anaerobic conditions pre-
dominant in the pile [12]. We assume that aerobic conditions apply within
the pile and model biological heat release as an oxidative process. Since
we are considering a spatially uniform model, we use singularity theory to
analyse the generic properties of the model. We provide a brief overview of
singularity theory in the next section.

1.1 Singularity theory with a distinguished parameter

The model studied in this article reduces to a scalar equation of the form

G(θ, λ,~p) = 0 . (1)

This scalar equation contains a state variable (θ), a distinguished param-
eter (λ), sometimes called the primary bifurcation parameter, and several
secondary bifurcation parameters (~p). The graph of θ versus λ for fixed ~p is
called a steady state diagram or a response curve.

The parameter space consists of regions with different kinds of steady state
diagrams. The fundamental task in the study of equation (1) is to identify
the types of steady state diagrams that occur and their location in parameter
space. We refer to a figure showing where the different types of steady state
diagrams occurring in the parameter space as a bifurcation diagram.

Golubitsky and Schaeffer [5] proved that a qualitative change in a steady state
diagram occurs if and only if the bifurcation parameters cross the boundaries
of one of three types of curves: the cusp, isola and double limit point curves.
Thus the bifurcation diagram is constructed by determining the locus of these
three curves in physical parameter space. This divides the parameter space
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into various regions, each corresponding to a different steady state diagram
of the problem G = 0 . This methodology was first systematically applied
to investigate multiplicity features of chemical systems by Balakotaiah and
Luss [1]. We now discuss briefly the four different types of singularities.

cusp The cusp variety is the set of ~p satisfying the equations

G = Gθ = Gθθ = 0 , with Gλ 6= 0 and Gθθθ 6= 0 . (2)

Typically when the cusp curve is crossed a hysteresis loop appears or
disappears in the steady state diagram as two limit points appear or
disappear.

isola The isola variety is the set of ~p satisfying the equations

G = Gθ = Gλ = 0 , with Gθθ 6= 0 and GθθGλλ − (Gθλ)
2 6= 0 . (3)

When the isola curve is crossed two limit points appear or disappear.
Two types of behaviour may occur. In the first, the steady state dia-
grams separate locally into two isolated curves (transcritical singular-
ity). In the second, an isolated branch of connected solutions appears
or disappears (isola singularity).

double limit The double limit variety is the set of ~p satisfying the four
equations:

G(θ1, λ,p) = G(θ2, λ,p) = 0 , with θ1 6= θ2 ; (4)

Gθ(θ1, λ,p) = Gθ(θ2, λ,p) = 0 ,

with Gθθ(θi, λ,p) 6= 0 , Gλ(θi, λ,p) 6= 0 , for i = 1, 2 . (5)

At the double limit point variety two limit points occur at the same
value of the distinguished parameter. As the double limit point variety
is crossed, the relative positions of these limit points change.

quadratic fold The quadratic fold variety is the set of ~p satisfying the equa-
tions

G = Gθ = Gθθ = Gθθθ = 0 . (6)
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Gθθθθ 6= 0 , Gλ 6= 0 . (7)

At a quadratic fold point, cusp singularity and double limit points
singularity bifurcation curves are merged with each other. This point
can be used to determine the existence of the double limit point variety.

1.2 Model

The basis of our model is similar to that developed by Semenov to explain
the phenomenon of thermal explosion in well stirred systems [16]. Our model
has the following features:

1. The compost pile has a uniform temperature, T , distinct from the am-
bient temperature, Ta;

2. The heat transfer to the surroundings is convective and linked with the
temperature difference solely by the heat transfer coefficient;

3. Consumption of the reactants is assumed to be negligible;

4. The concentration of oxygen in the pile is uniform, O2, and is distinct
from the ambient oxygen concentration, O2,a;

5. Oxygen transfer from the surroundings is convective and linked to the
concentration difference solely by the mass transfer coefficient.

The temperature dependence of the biological heat-release is parameterized
in the form

k(T) =
A1e

−E1/RT

1+A2e−E2/RT
. (8)

In this equation the biomass growth parameters A1 and E1 reflect that at
low temperatures the metabolic activity of the cells increases with increas-
ing temperature as activities of their own enzymes rise. However, when the
temperature exceeds a certain level, the essential cell proteins that are heat
sensitive start to denature leading to cell death. These processes are repre-
sented by the biomass deactivation parameters A2 and E2. For equation (8)
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to represent heat release due to biological activity it must have a global max-
imum on the interval 0 < T < ∞ , which leads to the requirement E2 > E1 .
Equation (8) has been used to model the maximum specific biomass growth
rate in the aerobic biodegradation of the organic fraction of municipal solid
waste [10]. It has also been used in several models for solid state fermen-
tation processes [3, 8, 14]. More details on this formulation are provided in
those articles and the references within.

2 Governing equations

2.1 Dimensionalized equations

In this investigation, we utilise the same model equations developed by Nel-
son et al. [13]. As mentioned earlier, we ignore depletion of cellulosic material
and biomass. This model consists of a mass balance equations for oxygen
and energy: Energy balance for compost pile

ρcvV
dT

dt
= QbVFb

A1e
−E1/RT

1+A2e−E2/RT
BO2 − χS(T − Ta); (9)

Oxygen balance for compost pile

V
dO2

dt
= −VFb

A1e
−E1/RT

1+A2e−E2/RT
BO2 + χmS(O2,a −O2); (10)

Initial condition

T(t = 0) = T(0) = Ta , O2(t = 0) = O2(0) = O2,a. (11)

All the terms that appear in the governing equations and initial condi-
tions (9)–(11) are defined in the nomenclature, Table 1. The first term on
the right-hand side of equation (9) represents heat generation due to the
biological reactions (the corresponding term appears as the first term on
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the right-hand side of equation (10) representing the consumption of oxygen
during the biological reaction processes), whilst the second term in equa-
tion (9) is the convective heat loss. The second term on the right-hand side
of equation (10) represents the convective flow of oxygen into the compost
pile.

2.2 Non-dimensionalized equations

Next we non-dimensionalized equation (9)–(10) by using the temperature,
oxygen and time scales of thermal explosion theory:

θ =
E1(T − Ta)

RT 2a
, Y =

O2

O2a
, t∗ = t

(
χS

cvρV

)
, ε =

RTa

E1
.

The non-dimensionlization process leads to the following equations: Dimen-
sionless energy balance

dθ

dt∗
= Y

ψb
[
exp

(
θ

1+εθ

)]
1+ β

[
exp

(
αdθ
1+εθ

)] − θ ; (12)

Dimensionless oxygen balance

dY

dt∗
= −ψbΓ

exp
(

θ
1+εθ

)
1+ β

[
exp

(
αdθ
1+εθ

)]Y + σ(1− Y) ; (13)

Dimensionless initial conditions

θ(t∗ = 0) = θ(0) , Y(t∗ = 0) = Y(0) . (14)

The parameters of the system are: ψb is the Semenov number for the biomass
which is refered to the size of the compost pile; β is the maximum rate
of inhibition of the biological activity; σ is the mass transfer number for
specific compost type; and Γ is the non-dimensionalized oxygen number for
the biological activity. The requirement E2 > E1 results in αd > 1 .
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2.3 Singularity function

To obtain the singularity function (G) we equate the time derivatives in
equations (12) and (13) to zero and re-arrange the steady state equations to
obtain the single singularity function

G = ψb(σ− Γθ) exp

(
θ

1+ εθ

)
− σθ

[
1+ β exp

(
αdθ

1+ εθ

)]
= 0 . (15)

In our investigation we use θ as the state variable parameter, ψb as the
primary bifurcation parameter, and σ and Γ as the secondary bifurcation
parameters. For our results we use the standard notation for the steady state
plots: solid lines denote stable solution branch; and dashed lines represents
unstable solution branch.

3 Results

The primary aim of this section is to represent the results for the isola, cusp
and double limit points singularity analysis that occur for equation (15). The
results overview the generic solution behaviour of this system. The analysis
for both cases when ε = 0 and β = 0 and when ε 6= 0 and β 6= 0 , have
been done previously only for the isola and cusp singularities [11]. We extend
the analsis by including the double limit point analsysis for the case when
ε = 0 and β 6= 0 . When β 6= 0 , it means that biological inhibition at high
temperature is now present; that is, we assume that the micro-organism and
proteins are affected by the high temperature environment. The approxima-
tion for ε = 0 is frequently made in combustion systems. Indeed it is the
reason for standard choice of temperature scale. Note that for a typical ac-
tivation energy of E1 ≈ 100 kJ mol−1 and ambient temperature Ta = 298K,
ε = 0.0248 can be considered to be small.
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3.1 Isola singularity analysis

The isola singularity conditions relevant to this case are

G = ψbe
θ(σ− Γθ) − σθ(1+ βeαdθ) = 0 , (16)

Gψb
= eθ(σ− Γθ) = 0 . (17)

From equation (17), we obtain σ = Γθ (noting that eθ is always greater than
zero) and we substitute the value of σ back into equation (16). Then the
G function reduces to

G = −Γθ2(1+ βeαdθ) 6= 0 . (18)

By inspection, θ = 0 is not a steady state solution from equation (16), and
therefore G 6= 0 . The values of β, αd, θ and Γ are always greater than zero
which results in the G function to be negative. Therefore the isola singularity
conditions (G = Gθ = Gψb

= 0) do not hold.

3.2 Cusp singularity analysis

The cusp singularity conditions relevant to this case are

G = ψbe
θ(σ− Γθ) − σθ(1+ βeαdθ) = 0 , (19)

Gθ = −ψbe
θΓ +ψbe

θ(σ− Γθ) − σ(1+ βeαdθ) − σθβαde
αdθ = 0 ,(20)

Gθθ = −2ψbe
θΓ +ψbe

θ(σ− Γθ) − 2σβαde
αdθ − σθβα2de

αdθ = 0 ,(21)

Gθθθ = −3ψbe
θΓ +ψbe

θ(σ− Γθ) − 3σβα2de
αdθ − σθβα3de

αdθ 6= 0 .(22)

By solving equations (19)–(21), we obtain

ψb =
αdθ

3

eθ(αdθ− θ+ 2)
, (23)

β = −
(θ− 2)

eαdθ

1

θ(αd − 1)2 + 2(αd − 1)
, (24)
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Figure 1: Bifurcation diagram. Parameter values are ε = 0 , αd = 2

and β = 6× 10−5.

Γ =
σ

θ3(αd − 1)

[
(αd − 1)θ

2 − (αd − 2)θ− 2
]

. (25)

By substituting the values of ψb, β and Γ back into (22), then

Gθθθ =

[
(αd − 1)θ

2 − (2αd − 4)θ− 6
]
αdσ

αdθ− θ+ 2
6= 0 . (26)

Hence the cusp singularity conditions (G = Gθ = Gθθ = 0 and Gθθθ 6=
0) is satisfied (the special case when Gθθθ = 0 is investigated in the next
section for a double limit point singularity). The bifurcation diagram in
expression (25) depends on the values of αd and θ. Obtain the value of θ by
solving equation (24) for a given value of β.
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Figure 2: Generic steady state diagrams for oxidative self-heating model
when Γ = 0.15 , β = 6 × 10−5, ε = 0 and αd = 2 . Parameter (a) σ = 0.4 ,
(b) σ = 0.62 and (c) σ = 1 . llp refers to the low ignition limit point and
elp denotes the extinction limit point.

Figure 1 shows the bifurcation diagram when ε equals to zero. Note that the
value of σ and Γ are fixed for particular type of biomass, whereas, the value
of ψb corresponds to the size of the compost heap and the concentration
of biomass which can be controlled. The values of αd and β used here,
corresponds to the same parameter values used by Sidhu et al. [17]. From
Figure 1, the bifurcation diagram is separated into two regions, with each
region representing different solution behaviour. When the bifurcation line
is crossed, a change in the solution behaviour occurs.

Figure 2 shows the steady state curves when the value of Γ is fixed to 0.15
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and the value of σ varies from the lower region across the cusp line to the
upper region. Curve (a) represents the solution when σ = 0.4 in the lower
region of the bifurcation diagram in Figure 1 (labelled ‘unique’). In this
region, the compost heap temperature (θ) increases gradually as the size
of the compost heap (ψb) is increased. For each value of ψb, there is a
unique value of θ. There is no sudden ‘jump’ or ‘drop’ between solution
branches. However, as the parameter values are varied to the upper region of
Figure 1 (the ‘S-shaped solution’ region), the steady state solution forms the
familiar S-shaped graph in thermal explosion studies as shown in curve (c).
On the low temperature solution branch, the temperature increases as the
compost heap size is increased. However, if the size of the compost heap is
increased beyond the low ignition limit point (llp), ψb ≈ 0.44 , there is a
‘jump’ from the low to high temperature solution branch. The temperature
suddenly ‘jumps’ from θ ≈ 1.2 (306.67K) at the llp to θ ≈ 5.25 (366.76K)
on the upper stable solution branch. On the other hand, if the compost heap
temperature is on the upper solution branch and the size of compost heap is
decreased beyond the extinction limit point (elp), ψb ≈ 0.21 , then there is
a significant drop in compost heap temperature from θ ≈ 4.15 (328.64K) at
the elp to θ ≈ 0.32 (300.36K) on the lower stable solution branch. In the
high temperature solution range, oxidation reaction of cellulosic material is
well known to occur and can occur rapidly resulting in spontaneous ignition.
Hence the sudden increase in temperature due to biological heating can be a
prelude to spontaneous ignition. Curve (b) represents the solution behaviour
on the cusp line (σ ≈ 0.62 and Γ ≈ 0.15). The solution behaviour is in the
a transition stage from the unique solution to the S-shaped solution. In this
case, the limit points (llp and elp) are located almost at the same value
of ψb.

Hence Figure 2 shows the significant difference between the amount of biomass
required to achieve a high degree of self-heating in curves (a) and (c), where
the biomass Semenov number in the former needs to be much greater than
in the latter to achieve the same level of temperature rise. From these figures
we deduce that if one wants biological self-heating to occur in the compost
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heap, then the parameters (Γ ,σ) in Figure 1 need to be in the region with
S-shaped solution.

3.3 Double limit points singularity analysis

To investigate the existence of the double limit points singularity (dlp), we
simply investigate the existence of the quadratic fold singularity point. Since
dlp only exists when this point does exist. Firstly, we try to find the possible
location of the quadratic fold singularity point by assumming that the value
of Gθθθ in equation (26) equal to zero in order to satisfy the quadratic fold
singularity conditions.

Since the value of σ and αd are always greater than zero, therefore from
equation (26), the quadratic fold point exists only when

(αd − 1)θ
2 − (2αd − 4)θ− 6 = 0 . (27)

By rearranging the equation (27) and recalling the constrain that αd > 1 ,
we obtain

αd =
θ2 − 4θ+ 6

θ(θ− 2)
> 1 . (28)

Solving the inequality (28), we find that there are two possible ranges of
θ values that satisfy the quadratic fold singularity conditions. These are
θ < 0 and 2 < θ < 3 . We analyse these two ranges separately for the
occurrence of the dlp.

3.3.1 Temperature 2 < θ < 3

From equation (24), all values of θ in this range corresponds to negative value
for β (infeasible region). Therefore the quadratic fold singularity does not
exist for physically realistic parameters. Thus the model definitely contains
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the dlp corresponding to negative value of β. However, we need to investi-
gate the possibility of the dlp moving over to the positive region of β values.
If the dlp is able to move to the positive region of β, then the quadratic
fold singularity must occur for β = 0 . Therefore we use the quadratic fold
singularity conditions to find the existence of the dlp when β = 0 .

The quadratic fold singularity conditions when β = 0 are

G = ψbe
θ(σ− Γθ) − σθ = 0 , (29)

Gθ = ψbe
θσ−ψbe

θΓθ−ψbe
θΓ − σ = 0 , (30)

Gθθ = ψbe
θσ−ψbe

θΓθ− 2ψbe
θΓ = 0 , (31)

Gθθθ = ψbe
θσ−ψbe

θΓθ− 3ψbe
θΓ = 0 . (32)

Solving equations (29)–(31), we obtain

ψb = 4e
−2, θ = 2 and Γ =

σ

4
.

Substituting the values of ψb, θ and Γ back into equation (32) results in

Gθθθ = −σ. (33)

Since Gθθθ 6= 0 in equation (33) as σ 6= 0 , the quadratic fold singularity
conditions does not hold when β = 0 and the dlp will never occur in this
case. Therefore, the dlp only occurs in this model in the negative region
of β (infeasible region) and it is not able to move across to the positive β
region.

3.3.2 Temperature θ < 0

To complete our analysis, we consider the negative value of θ. By considering
equation (25) for negative values of θ, we conclude that Γ is always negative
(we only consider solutions for positive ψb in equation (23) as ψb refers to the
compost pile size and must be non-negative). Therefore, the quadratic fold
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point occurs in the non-feasible region of Γ . We again investigate whether
the dlp is able to move over to the positive Γ region by investigating the
existence of the quadratic fold point when Γ = 0 . The case when Γ = 0

represents the anaerobic model (no oxygen consumption).

The quadratic fold singularity conditions when Γ = 0 are

G = ψbe
θσ− σθ(1+ βeαdθ) = 0 , (34)

Gθ = ψbe
θσ− σ(1+ βeαdθ) − σθβαde

αdθ = 0 , (35)

Gθθ = ψbe
θσ− 2σβαde

αdθ − σθβα2de
αdθ = 0 , (36)

Gθθθ = ψbe
θσ− 3σβα2de

αdθ − σθβα3de
αdθ = 0 . (37)

Solving equations (34)–(36), we obtain

ψb =
θ(θ2 − 2θ+ 2)

eθ
, β =

θ2 − 2θ+ 1

exp
(
θ2−2θ+2
θ−1

) , and αd =
θ2 − 2θ+ 2

θ(θ− 1)
.

Substituting the values of ψb, β and αd back into (37), then

Gθθθ =
(θ2 − 4θ+ 2)(θ2 − 2θ+ 2)σ

(θ− 1)θ2
. (38)

The quadratic fold point singularity is satisfied only when equation (38)
equals zero. By letting equation (38) equal to zero, there are two possible
real values of θ which are θ = 2 +

√
2 and θ = 2 −

√
2 . However, if we

substitute these values back into the αd equation above, we obtain αd ≈
0.82 and αd ≈ −4.82 respectively which breaks our model requirement that
αd > 1 . Therefore, the dlp does not exist for Γ = 0 . Hence the dlp only
occurs in negative region of Γ value when θ is negative and it cannot move
over to positive region of Γ .

As a result, we conclude that the quadratic fold point singularity and the dlp
exist in this model for negative parameter values, and therefore do not have
physical meaning. However, that they do occur may be important for future
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work when we include the oxidation reaction in the model. The inclusion
of the chemistry may ‘drag’ the quartic fold point into physically realistic
parameter space and may have important consequences. This is an area for
future investigation.

4 Conclusions

We investigated a simple model for biological oxidative self-heating in com-
post piles. We first non-dimensionalized both energy balance and oxygen
balance equations using the Frank–Kamenetskii variables. As the model con-
tains fewer parameters, it is possible to thoroughly investigate the generic
behaviour, as the parameters are varied, through the use of singularity the-
ory. As suspected, the cusp singularity separates the parameter plane into
two regions. In the lower region, the solution behaviour is just a monotonic
increasing function without any limit points. On the other hand, solution
behaviour in the upper region contains limit points, and multiple solutions. If
the biomass Semenov number is sufficiently large, biological self-heating can
occur. By using the bifurcation diagram generated from the singularity anal-
ysis, one can deduce the parameter values required if biological self-heating
is a desirable outcome. We also found that the isola singularity and double
limit points singularity do not exist in this model. We also plan to inves-
tigate the possibility of the Hopf bifurcations in the future, as spontaneous
combustion may occur via this type of bifurcation.

Having established a conceptual understanding for biological oxidative self-
heating in compost piles, we plan to investigate a more realistic model when
both oxidative biological and oxidation reactions are present with oxygen
consumption. Later we also intend to investigate the effects of the flow of air
into the compost heap as well as the effects of moisture content. Singular-
ity theory will provide a useful tool in systematically analysing these more
complicated systems.
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Table 1: nomenclature.
A1 pre-exponential factor for biomass, s−1

A2 pre-exponential factor for the inhibition of biomass, (−)
B the concentration of biomass in the bioreactor, kg m−3

C the concentration of cellulose in the bioreator, kg m−3

cv heat capacity of the compost heap, J K−1 k g−1

E1 activation energy for biomass growth, J mol−1

E2 activation energy for the inhibition of biomass growth, J mol−1

Fb substrate inhibition term
O2 oxygen concentration within the pile, kg m−1

O2,a ambient oxygen concentration, kg m−1

Qb exothermicity of the biomass growth reaction, J kg−1

R ideal gas constant, J K−1 mol−1

S the internal surface area of the bioreactor, m−2

T temperature within the compost pile, K
Ta the ambient temperature, K
t time, s
V volume of the bioreactor, m3

ρ density of the compost heap, kg m−3

χ heat transfer coefficient between the compost heap and its surround-
ings, J s−1 m−2K−1

χm mass transfer coefficient between the compost heap and its surround-
ings, m s−1

αd dimensionless activation energy for the inhibition of biomass growth,
αd = E2/E1

β maximum dimensionless rate of inhibition, β = A2e
−E2/RTa

ε reduced activation energy for biomass growth, ε = RTa/E1
θ non-dimensionalized bioreactor temperature, θ = E1(T − Ta)/RT

2
a

t∗ non-dimensionalized time, t∗ = t(χS/[cvρV])
ψb the Semenov number of the biomass,

ψb = O2aBE1QbVFbA1e
−E1/RTa/[χSRT 2a]

σ non-dimensionalized mass transfer number, σ = cvρχm/χ
Γ non-dimensionalized oxygen number for biological reaction,

Γ = RT 2acvρ/[E1QbO2a]
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