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Abstract

The Multi-Hypothesis Tracker (MHT) is generally considered to be
the best performing conventional tracker. It assesses the feasible as-
sociation of sequences of measurements, calculates the probabilities of
the association hypotheses and has track initiation capability. Whilst
conventional tracking systems use a detection algorithm to extract
measurements from the sensor data, Track-Before-Detect techniques
remove the detection algorithm and supply all information received
from the signal processing system as measurements to be associated
and filtered by the tracker. We compare the performance of the MHT
with that of a grid-based Hidden Markov Model Track-Before-Detect
algorithm for low signal-to-noise ratio targets. The performances of
the MHT and grid Hidden Markov Model algorithms are quantified
using six measures: root-mean-square position error, overall detec-
tion probability, instantaneous detection probability, false track count,
false track length, and computation resource. The grid Hidden Markov
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Model algorithm is found to have better detection and significantly
better false track performance at the cost of computation resource.
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1 Introduction

Conventional target tracking systems apply a sequential collection of algo-
rithms to the sensor data, culminating with a detector and a tracker. The
detector takes a single frame of data and extracts point measurements from
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data features likely to correspond to targets, whilst the tracker uses a dy-
namic model to associate measurements over time. The Multi-Hypothesis
Tracker (MHT) [1] is generally considered to be the best performing conven-
tional tracker. However, it is complex to implement and may carry a high
computation load.

Track-Before-Detect (TkBD) is a paradigm that removes the detector and
provides sensor data directly to the tracker [2]. This allows the hard-decision
detection process to be deferred until after the temporal correlation of the
data and improves performance for low Signal to Noise Ratio (SNR) targets.
Although TkBD algorithms have been used for thirty years [3, e.g.] there
has not been a thorough comparison of the various algorithms for TkBD with
each other or with the MHT. Recent work compared TkBD with Probabilistic
Data Association (PDA) [4] and showed that PDA was far inferior. However,
MHT would be expected to give better performance than PDA. To date the
only comparison of TkBD with MHT used an unusual TkBD approach [1, 5].
This article extends the research of Davey et al. [4] to include MHT.

2 Problem definition

This article aims to determine whether the MHT provides detection and track-
ing performance comparable to, or better than, the discrete state space Hid-
den Markov Model (HMM) algorithm solution to the TkBD problem [6]. From
here onwards, the latter will be referred to as the grid HMM method.

Performance was quantified by the ability of the algorithms to detect targets,
the estimation accuracy once targets were detected, and the computation
resource required by each. There may be a trade-off between some of these
measures for both the MHT and the HMM techniques.



2 Problem definition C250

2.1 Target state model
Assuming a discrete time model, the target state xx at scan k consists of the
x-position, x-velocity, y-position and y-velocity; that is
Xe=l[we we v (1)
The system is modelled by the linear stochastic process
Xier1 = Fxg +wy, (2)

where F is the state transition matrix, and wy is the system noise, which
is assumed to be described by a Gaussian distribution with zero mean and
known covariance Q. These matrices are
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where T = 1 is the scan period, assumed uniform for simplicity (although
this is not required) and q represents the variance of the acceleration pertur-
bations and was chosen to be ¢ =0.5.

2.2 Measurement model

The MHT and HMM use different measurement models. For MHT, each mea-
surement is a two dimensional vector consisting of observations of the x-
position and the y-position. For HMM, the measurements at each scan k
represent the received energy in the pixels of a two dimensional image taken
at that time. If the target is present, then the intensity in pixel m is assumed
to be Ricean distributed [4] with pdf
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where h™(xy ) is the contribution in the pixel from the target, Io(-) is the mod-
ified Bessel function of the first kind with order zero and o? is the variance
of the measurement noise. Otherwise, the intensity in pixel m is assumed to
be Rayleigh distributed [4] with pdf

2zm (Zm)Z
m _ k k
Pr(z;" | notarget) = 52 XP {— 2| (4)
The set of measurements at scan k is zy = {z{,z%,..., 2z}, where n is the

number of pixels in the image taken at that scan. The set of measurements
for all scans is denoted by Z, ={z;|1i=1,2,...,k}

For the simulations, intensity images were generated and were sent directly to
the HMM tracker for association and filtering. For the MHT tracker, the inten-
sity images were fed into a peak detector that generated a set of peaks [7].
The peaks were the input for the MHT tracker. The set of peaks at each
scan k is y(k) = {yn(k )}n ; where m(k) is the number of peaks generated
in scan k.

3 Algorithms

3.1 Multi-hypothesis tracker

The MHT is a technique that assesses the feasible association of sequences of
measurements and calculates the probabilities of the assomatlon ?/ otheses.
Suppose at time k we have a set of measurements y(k) = {yn(k)},_; and the
set of association hypotheses 8¥~'. We generate the set 0% by assomatmg gx—!
first with y;(k), then the resulting set is associated again with y,(k). This
process is performed repeatedly up to Ymk)(k). On the first scan, each y, (1)
can be taken as a false alarm or as a new track. The feasible association rules
for all other y, (k) are

e the measurement is a false alarm,
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e the measurement is the continuation of a previous track, or
e the measurement initiates a new track.

This process leads to an exponential growth in the number of hypotheses as
time advances. In order to manage these hypotheses, the total number of
hypotheses is controlled by

e clustering of hypotheses with incompatible tracks, that is, tracks shar-
ing common association history or measurements,

e pruning of hypotheses with low probabilities,
e merging/combining hypotheses with similar effects.

In general, there are two approaches to implementing the MHT [1]. The
first approach originated from the work of Reid [8] and is referred to as
the hypothesis oriented MHT. The second approach is known as the track
oriented MHT.

The hypothesis oriented MHT maintains an array of hypotheses from scan
to scan. These hypotheses continually grow as new measurements are re-
ceived and are then pruned using empirically derived rules that vary with
a particular study. At each scan, the set of association hypotheses 0% is
carried over from the previous scan. Each hypothesis contains tracks that
do not share common association history (measurements) with other tracks
in the hypothesis. The set 8% is then expanded to the set 8% as new mea-
surements are processed and associated according to the feasible association
rules mentioned earlier. The hypotheses are evaluated by calculating their
probabilities. These probabilities are then used to prune the hypotheses.
The tracks contained in the hypotheses that passed the pruning process are
then filtered.

The track oriented MHT does not maintain an array of hypotheses from scan
to scan. Instead, the tracks generated on each scan are assigned into hypothe-
ses and those tracks contained in the hypotheses that passed the pruning
process are then predicted to the next scan.
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The MHT implemented in this article employs the hypothesis oriented ap-
proach. Management of hypotheses is controlled by pruning the hypotheses
with low probabilities and merging the hypotheses with similar effects.

The tracking filter used in this study was the Kalman filter (KF). It estimated
the state of the discrete time dynamic process in a way that minimised the
mean of the squared error [9]. The KF assumed a linear state space model
and Gaussian dynamic noise in the system model equation and Gaussian
measurement noise in the measurement equation, as described in Section 2.1.

3.2 Track-before-detect

Traditional tracking systems employ a detection threshold to extract point-
measurements from sensor intensity images. The use of a detection threshold
may lead to irretrievable loss of data: if the threshold is too high, then low
SNR targets are completely ignored. A low threshold, on the other hand, may
lead to an excessive number of false alarms.

The Track-Before-Detect (TkBD) approach uses all information received from
the signal processing system as measurements to be associated and filtered
by the tracker. The detection decision is deferred until after temporal corre-
lation.

The TkBD paradigm models the sensor image as a function of an unknown
target state. The likelihood of a sequence of images is a highly non-linear and
non-Gaussian function of the target state. Since the measurement process
is non-linear and non-Gaussian, we must use a numerical approach to solve
it. The grid HMM algorithm approximates the state space with a constant
spacing grid in position and velocity. This transforms the problem into a dis-
crete state one whereby discrete state algorithms such as the HMM algorithm
and Viterbi can be brought to bear. This is costly because the state space is
very large and we must estimate the probability of the target state for each
location in the space.
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The likelihood ratio for pixel m is defined as the ratio of the likelihood given
a target (3), and the likelihood given no target (4). This function is the main
driver for many TkBD methods and is

L |y — — P ) —hm(xk)z] o [ 0]

= ex
Pr(z* | notarget) P { 0?2 0?2

There are a number of approaches to TkBD. Comparative studies [4, 10, 11]
were conducted among the H-PMHT, Viterbi, PDAF, HMM estimator and the
Particle Filter. These demonstrated similar detection performance between
the algorithms but varied with regard to the required computation time.

The TkBD algorithm used in this study is the grid HMM estimator, described
in detail by Davey et al. [4, 10], an extract follows.

3.3 HMM algorithm

The posterior pdf of the target state is recursively determined using the
well-known Bayesian relationship

Pr(xy | Zx) o< Pr(z | xx) JPY(Xk | Xx—1) Pr(xy—1 | Zy—1) dxx—1 (5)

The Bayesian estimator in this article is a direct approximation to (5) based
on a discretisation of the state space. Choose a uniformly spaced set of
states, X (which is not necessarily related to the discrete measurement func-
tion). Equation (5) is then approximated by

Prix | Z) = KL(zi | %) ) Pr(xiclxi 1) Pr(xici | Ziy)  (6)
Xk—1€X

where K is a normalising constant. The approximation is exact in the limit
as X approaches R*. The first term in (6) is the intensity independent
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marginal likelihood, defined by

o0

Lz | %) = Jo Lz | %) Pr(Li) dly. (7)

The discrete state space is augmented with a null state, (), to indicate the pos-
sibility that there is no target. Denote the probability of target death as Py,
and the probability of target birth as P,. Then the evolution probability
in (6) is

1—Py, X =0, xxe1 =10,
Pr(xy [ xx 1) = Pa: =0, %1 £0,
Py /1X], Xk 0, xi1 =10,
(1=Pa) Pr(vi =i — Fx1), i # 0, xxq # 0,

where |X| is the number of discrete states in X.

The parameters P, and P4 control the detection performance and can be
tuned to optimise detection performance. The selection of the state space, X,
is a tradeoff between estimation accuracy, which improves with finer resolu-
tion, and computation requirement, which increases with |X|. The process
noise pmf also affects estimation accuracy, as well as providing some capac-
ity to handle model mismatch between the assumed target model and the
true target motion. The algorithm is initialised with Pr(xg = @) = 1 and
Pr(xo) =0 for all xo # 0.

Once the pdf of the state has been evaluated, a state estimate is obtained by
selecting the state with the highest probability. In the event that this state is
the null state, then the algorithm reports that there is no target. To account
for the case where the pdf has a peak that is spread over several grid cells, the
implementation used finds the highest probability non-null state and accu-
mulates the probability in the adjacent cells. If the accumulated probability
is higher than the null-state probability, then a detection is reported.



4  The experiments C256

Given that the relative performance of the grid HMM is known compared
with other TkBD approaches, it is possible to extrapolate the comparison
here to those approaches. Davey et al. [4] demonstrated that there was little
difference in performance between the various TkBD algorithms tested, so a
comparison of MHT with other TkBD algorithms would be expected to give
similar results to the comparison contained in this article.

4 The experiments

4.1 The scenarios

The MHT and grid HMM algorithms were compared using simulated scenarios
of a manoeuvring target and a scenario with no target present. The scenarios
of a manoeuvring target had the same speed but variable SNR. The target
peak SNR quantifies the height of the peak of the target point spread function
relative to the noise floor, and represents a measure of how easy it is to
detect the target [4]. The peak SNR is defined as 20log(I/0?) where I is
the contribution to the pixel at scan k when the target is located exactly
on the sample point for the pixel and o? is the variance of the measurement
noise. The target SNR was varied from 3dB to 12dB and the speed was one
pixel per frame for all scenarios. The no-target scenario ran over 2000 scans
to quantify the number of false tracks formed.

4.2 Measures of performance

The metrics used to measure performance were as follows.

1. Fualse track count The number of false tracks generated in the no-target
scenario.
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TABLE 1: False track performance and computation resource.
Algorithm False track False track  CPU resource

count length seconds ratio
MHT 438 27 128000 1
Grid HMM 9 2 177000 1.4

2. False track length The average number of frames for which these false
tracks existed.

3. Computation resource The total CPU time in seconds required to eval-
uate all of the scenarios.

4. RMS position error The error averaged over those times when the target
was detected.

5. Quverall detection probability The fraction of Monte Carlo runs for which
the target was detected at any time.

6. Instantaneous detection probability The total fraction of times for which
the target was detected.

4.3 Simulation results

The scenarios described in Section 4.1 were simulated to evaluate the per-
formance of the trackers. 500 Monte Carlo trials were performed for each
scenario. Table 1 shows the false track performance and computation re-
source requirements of MHT and grid HMM algorithms.

A plot of the RMS position error is shown in Figure 1. A plot of the overall
detection probability is shown in Figure 2 and a plot of the instantaneous
detection probability is shown in Figure 3. The metric in each figure is
plotted as a function of SNR. Note that the standard deviations are shown
as upper and lower range limits of error bars.
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FIGURE 1: RMS position estimation error: “bayes” actually denotes the HMM
algorithm; and “mht” denotes the multi-hypothesis tracker algorithm.
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F1GURE 2: Overall detection probability: “bayes” actually denotes the HMM
algorithm; and “mht” denotes the multi-hypothesis tracker algorithm.
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FIGURE 3: Average instantaneous detection probability: “bayes” actually
denotes the HMM algorithm; and “mht” denotes the multi-hypothesis tracker
algorithm.
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From Table 1, the false track statistics of MHT exceeded those of the grid
HMM algorithm by two orders of magnitude—an indication that the grid HMM
technique was more effective and accurate in terms of false track performance.

In terms of computation resource, the MHT was about 1.4 times faster than
the grid HMM algorithm. The MHT took around 35.5 hours to evaluate all
scenarios over 500 Monte Carlo trials whereas the grid HMM algorithm took
a little over 49 hours.

Figure 1 confirmed our anticipated result for the RMS position errors. Al-
though the mean position errors of the MHT algorithm for SNR values were
slightly higher than those of the grid HMM algorithm, the standard deviations
of the two graphs overlapped for all scenarios. Owing to the overlapping of
RMS position errors when standard deviations were taken into account, it
is inferred that the RMS position errors of the algorithms were comparable.
Overall, the position errors of both algorithms were very small. The trend
of the curves indicates that as the SNR increased, the error decreased and
the standard deviations became smaller. This was understandable because
at low SNR, tracks were formed relatively far away from the true positions
of the target. On the other hand, at high SNR values, tracks closely followed
the true trajectory of the target, and standard deviations were small.

Figure 2 shows that the grid HMM algorithm outperformed the MHT when
measured in terms of the overall detection probability metric. For SNRs
of T0dB and higher, both algorithms were able to detect the target for all
Monte Carlo trials. For SNRs less than 10dB, the grid HMM algorithm proved
its superior performance. The overall trend was that, as the amplitude in-
creased, overall detection probability also increased.

Figure 3 showed a similar pattern: instantaneous detection performance im-
proved with increasing SNR. The MHT outperformed the grid HMM at SNRs
of T0dB and higher. For other SNR values, the HMM outperformed the MHT.
This implies that when MHT detects the track, it detects it for longer. This
is because the MHT reports the whole history of the track, not just the track
points after the track has been deemed good. In contrast, the grid algorithm
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is causal. For many applications, real time performance is required and the
revision of history is of little interest. Hence, the slight advantage of MHT at
high SNR is not highly important.

In summary, the grid HMM algorithm provided better detection and false
track performance than the MHT at the expense of computational load. How-
ever, the RMS position errors of the algorithms were comparable.

5 Conclusion

The performance of MHT and grid HMM algorithms were evaluated based on
six metrics: RMS position error, overall detection probability, instantaneous
detection probability, false track count, false track length and computation
resource. The grid HMM algorithm had better detection and significantly
better false track performance at the cost of computation resource. The
MHT was tuned to have a detection performance that was almost as good
as that of the grid auMM. The false track statistics show that the former
was two orders of magnitude worse than the latter. RMS position errors of
the algorithms were small and comparable. For both algorithms, detection
probabilities increased with increasing SNR and RMS position errors decreased
with increasing SNR.
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