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Copula techniques in wireless communications
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Abstract

Copula techniques were originally developed as a method for mod-
elling data dependence in financial applications and are proving useful
in many other fields. We show how the Copula concept may be ex-
ploited to model dependence in wireless communications problems. In
particular we consider multipath correlation, with signal fading, in a
wireless propagation medium. The Copula approach is also considered
for the purpose of separating signals that have become dependent
in such propagation scenarios and we investigate methods for Blind
Source Separation that provide alternatives to the popular Independent
Component Analysis approach. Our approach to the Blind Source
Separation problem forms an objective function based on the copula
parameter of the dependence structure, then a transformation is sought
which inverts the function producing the dependence and which yields
an independent copula. This approach has the potential to provide a ro-
bust and easily applied technique for isolating wireless communications
signals in a wide range of propagation scenarios.
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1 Introduction

The theory of copulas was originally developed as a means of incorporating
dependence between random variables in the field of finance and there are many
useful introductory texts on the subject of copulas, for example see the text
by Nelsen [9]. A topical and highly active area in the field of communications
theory is that of Multi-Input Multi-Output (mimo) wireless communications
systems, where communication takes place between a transmitter array and
a receiver array. Two wireless communications challenges are considered here
as potential candidates for the application of copula techniques: modelling
signal correlation and propagation effects, Blind Source Separation (bss).

The Rayleigh distribution has been a long term standard; however, thanks
to its wide versatility and analytic tractability, the Nakagami-m distribution
has become popular for modelling wireless fading scenarios [1, 2]. Techniques
for modelling data correlation in the mimo case tended to be quite involved
and hence difficult to implement and computationally demanding. A simple
and intuitive approach is desirable.
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There are several algorithms developed for the purpose of separating mixtures
of independent sources. For many of these algorithms to be successful, the
original independent sources must have non-Gaussian marginal probability
densities. Copula methods offer an alternative approach that does not depend
on the source distributions but which instead exploits the structure of the
dependence between the sources.

2 Copula theory

A copula can be briefly described as a function that connects one dimensional
marginal distributions through a multivariate distribution and may therefore
be seen as a means for deriving multivariate distributions with any desired
dependence incorporated. There are several well-known copula families which
are described in the literature [9, e.g.]. The basis for the theory of copulas
stems from Sklar’s Theorem [9] which states: An m-dimensional copula is a
function C from the unit m-cube [0, 1]m to the unit interval [0, 1] and satisfies
certain conditions. For an m-variate function F, the copula associated with F
is a distribution function C : [0, 1]m → [0, 1] that satisfies

F(y1, . . . ,ym) = C(F1(y1), . . . , Fm(ym); θ), (1)

where θ is a parameter of the copula called the dependence parameter, which
measures dependence between the marginals. We make use of two copulae
in this study: multivariate Gaussian for modelling dependence, and the
independent (or product copula) for bss purposes.

3 Correlated fading

We develop the mimo wireless propagation model and show how a copula
may be employed to account for dependence or correlation in the propaga-
tion channel. In wireless communications, fading is the attenuation that a



3 Correlated fading C529

RF Environment Tx

Rx 1

Rx 2

S

S
S

S

SS

Figure 1: mimo rf Scenario. Propagation between tx and rx1 is indicated
in green. Propagation between tx and rx2 is indicated in light blue. rf
scattering is represented by scatterers S.

signal experiences when passing through a propagation medium and is often
modelled as a random process. Reflectors in the environment surrounding
a transmitter and receiver create multiple paths that a transmitted signal
traverses. As a result, a receiver sees the superposition of multiple copies
of the transmitted signal. Each signal copy will experience differences in
attenuation, delay and phase shift. A number of different probability distribu-
tions have been employed by researchers to simulate multipath fading effects
including: Rayleigh, Rician, Nakagami-m.

Figure 1 illustrates a mimo wireless Radio Frequency (rf) scenario with one
transmitter array (tx) and two independent receiver arrays (rx1 and rx2).
The whole rf environment is represented in grey. rf propagation between
tx and rx1 due to line-of-sight signals and rf scatterers in the environment
is shown in green. rf propagation between tx and rx2 is shown in light blue.
This picture could represent a communications broadcast scenario, where both
of the receivers are intended to receive the signals from the transmitter, or a
surveillance scenario, where one of the receivers is not the intended recipient
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of the signals. A simple linear mixing model that is commonly used for mimo
simulations is Y = AX+W , where Y is the m× n received signal matrix,
X is the transmitted source matrix, W is an additive receiver noise matrix
and A is an m×m channel gain or mixing matrix between the transmitter
and receiver. The array dimension is m and n is the number of samples
in a given block of time. We make the following assumptions: X is an iid
m× n random source matrix with zero mean and var{xi,j} = σ

2
x; W is an iid

m × n random Gaussian noise matrix with zero mean; and var{wi,j} = σ2w.
Dependence may be introduced at the transmitter array, the receiver array,
within the propagation channel, or any combination of these. We require a
flexible technique that will allow us to change the fading distribution of the
channel coefficients and incorporate dependence between them. This may be
readily achieved through the use of copulae. To obtain a sequence of random
fading channel coefficients that are dependent we take the following approach.

• Let a = vec (A); that is, vector a is an m2 × 1 vector with elements
a1,a2, . . . ,am2 that are independent random variables distributed ac-
cording to whatever fading we require. This could be a mix of Rayleigh,
Rician or Nakagami-m random variables.

• Let ai ∼ Pi(ai); that is, ai is distributed with distribution function Pi(ai)
and let the desired joint distribution for a be P(a) = P(a1,a2, . . . ,am2).
The copula is defined for P(a) as C(u) = P(a), where ui = Pi(ai)
or, alternatively, ai = P−1i (ui) and the ui are uniformly distributed
variates.

• The inverse functions of the marginal distributions are P−11 , . . . ,P−1
m2

so that a1 = P−11 (u1),a2 = P−12 (u2), . . . ,am2 = P−1
m2(um2), where

u1, . . . ,um2 are uniformly distributed variates. Hence,

P(a) = P
[
P−11 (u1), . . . ,P−1

m2(um2)
]
= C(u1, . . . ,um2) = C(u), (2)

where C(u) is the copula that must be chosen to link the marginals.

In short, the procedure for generating a channel matrix sequence, with
dependence, is the following.
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1. Choose an appropriate multivariate copula and generate a matrix, which
is m2 × n , of dependent uniformly distributed random variables, where
each row corresponds to one of the channel matrix coefficients.

2. Choose a fading distribution for each of the elements (rows) of the
matrix and apply the inverse function so that a matrix of dependent
random variables with the desired distributions is obtained.

3. Convert the matrix to a sequence of m×m matrices using the inverse
of the vec (·) operation for each column of the m2 × n matrix.

To obtain a complex mixing matrix we assume that the real components are
independent of the imaginary components and repeat the above procedure
to obtain two real matrices. This produces a random matrix for the fading
amplitude; however, we need to consider the distribution of the phase of the
coefficients. Let AR and AI represent, respectively, the real and imaginary
parts of A, obtained from two repetitions of the above procedure, then we
obtain the correct phase distribution in forming the complex mixing matrix

A = AR � sign(BR) + jAI � sign(BI), (3)

where BR and BI are two matrices with iid normally distributed components
and which are the same size as AR and AI respectively. Complex values
are formed using the imaginary unit j =

√
−1 and � is the Hadamard or

elementwise product. The true phase and amplitude expressions for the
Nakagami-m distribution are provided by Yacoub, Fraidenraich and Santos
Filho [11] and are used in the simulations for comparison.

An Octave1 (a free alternative to Matlab) implementation for dependent
fading channel generation was developed. The code allows for marginal
channel distributions to be chosen from either the Rayleigh or Nakagami-m
distributions. The multivariate channel copula may be selected from the:
Normal, Student-t, Clayton, Frank or Gumbel distributions. The Nakagami-
m distribution can be obtained in two different ways: inverse distribution

1http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/
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Figure 2: Amplitude distributions, Nakagami fading, Gaussian copula.

approximation [2] or inverse gamma distribution [12] then take the square
root of the result.

Simulations have been performed to demonstrate this method and results are
shown in Figures 2 and 3. In the simulations two elements of a channel matrix
are studied. A sequence of 10 000 instances of the pair of elements is generated
where the elements follow a Nakagami-m distribution and a Gaussian copula
is utilised, with a correlation matrix where the cross-correlation terms = 0.9
(that is, highly dependent). Figure 2 shows a scatter plot of the correlated
amplitudes of the two elements. The associated histogram plots compare the
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Figure 3: Phase distributions, Nakagami fading, Gaussian copula.

amplitude distributions with the theoretical Nakagami amplitude distribution.
Figure 3 shows the correlated phases of the two elements. The associated
histogram plots compare the phase distributions with the theoretical Nakagami
phase distribution.
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4 Blind source separation

We now consider the problem of receiving mimo signals that have passed
through an unknown channel. The challenge is to estimate both the channel
mixing matrix and the source signals. Problems of this type are known as
blind source separation problems and many techniques have been developed
that attempt to separate a multivariate signal into subcomponents that are
mutually independent. Many of these techniques rely on objective function
tests for non-Gaussianity in the estimated components. The independent
components are identifiable up to a permutation and scaling of the sources.
A popular Independent Component Analysis (ica) implementation is the
fastica algorithm [6]. Copula based approaches have been previously pro-
posed [3, 7] which have preprocessing steps in common with ica algorithms.
In the case of a multivariate Gaussian copula the copula parameter is the
correlation matrix so that the sources will have been resolved when there is
zero correlation between separated components. Alternative tests for indepen-
dence include Kendall’s τ [4] that test for dependence between the rankings of
the components. The radical algorithm [8] uses an entropy-based estimator
and has also been implemented in our simulations. The algorithms proceed
with the following steps.

• Center the observed data—subtract the mean and normalise (unit power)
the observed mixture power.

• Whiten observations—via Eigenvalue Decomposition (evd). This pro-
cedure converts the observation covariance matrix to an identity matrix
and reduces the search space to a search for a unitary transformation.

• Find a unitary (complex data) or orthogonal (real data) transformation
that minimises an objective function: kurtosis, negentropy, copula
parameter.

We simulated the mimo scenario where there is a transmitter array with
two elements and a receiver array with two elements so that the channel is
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represented by a 2× 2 matrix. Random message blocks of size 2× 500 were
generated with the assumption that the channel matrix remained constant for
this block length. The distribution of the independent sources was controlled
by employing the Generalised Gaussian distribution [10] parametrised by α,
where the distribution is Gaussian when α = 2 . When α < 2 the distribution
has a positive kurtosis and when α > 2 the distribution has a negative kurtosis.
For each value of α, 100 instances were generated of the 2 × 500 message
block and the 2× 2 channel matrix. A Gaussian noise matrix was added so
that the input signal-to-noise ratio (snr) was 10 dB. The average performance
of the separation algorithms was then calculated as the mean output snr
over the 100 repetitions. Ambiguities in scale and permutation were taken
into account in the simulations. In the real data case, after prewhitening,
the algorithms must find an orthogonal 2 × 2 matrix that maximises the
estimated source independence. This is equivalent to finding the angle for
a 2D rotation matrix. However, in the 2D complex data case, the unitary
matrix is formed from a rotation angle and three phases and so there are four
degrees of freedom that must be optimised [5].

Figure 4 compares the simulation results for real data. The mle assumes that
the mixing matrix is known a priori. The fastica results have a minimum
when the Generalised Gaussian distribution parameter α = 2 , confirming
the well-known fact that this algorithm has difficulty in separating a mixture
of Gaussian sources. However, as |α − 2| increases, fastica is better able
to separate the sources. Results from the radical algorithm are similar to
those from fastica for α < 2 but degrade when α > 2 . Results from the
Kendall’s τ and correlation algorithms are poor but are clearly independent
of the source distribution. Figure 5 compares the results for complex data.
As for the real data case, the fastica results have a minimum when α = 2 .
Results from the Kendall’s τ and correlation algorithms are poor but again
are independent of the source distribution. When the sources are close to
Gaussian, the Kendall’s τ and correlation algorithms appear to perform
marginally better than fastica.
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Figure 4: Source separation performance, real data.
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Figure 5: Source separation performance, complex data.
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5 Summary

Copula theory has been shown to provide a practical and intuitive approach
for modelling dependence in mimo wireless channel simulations and, with
further work, may be adapted to overcome some limitations inherent in ica,
if a reliable test for independence can be found.

References

[1] M.-S. Alouini, A. Abdi, and M. Kaveh. Sum of gamma variates and
performance of wireless communication systems over Nakagami-fading
channels. Vehicular Technology, IEEE Transactions on,
50(6):1471–1480, November 2001. doi:10.1109/25.966578 C527

[2] N. C. Beaulieu and C. Cheng. an efficient procedure for Nakagami-m
fading simulation. In Global Telecommunications Conference, 2001.
GLOBECOM ’01. IEEE, volume 6, pages 3336–3342, November 2001.
doi:10.1109/GLOCOM.2001.966304 C527, C532

[3] Ray-Bing Chen, Meihui Guo, Wolfgang Härdle, and Shih-Feng Huang.
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[5] P. Diţă. Factorization of unitary matrices. Journal of Physics A:
Mathematical and General, 36(11):2781–2789, March 2003.
doi:10.1088/0305-4470/36/11/309 C535

http://dx.doi.org/10.1109/25.966578
http://dx.doi.org/10.1109/GLOCOM.2001.966304
http://ideas.repec.org/p/hum/wpaper/sfb649dp2008-004.html
http://dx.doi.org/10.1007/BF02736122
http://dx.doi.org/10.1088/0305-4470/36/11/309


References C539

[6] A. Hyvärinen. Fast and robust fixed-point algorithms for independent
component analysis. Neural Networks, IEEE Transactions on,
10(3):626–634, May 1999. doi:10.1109/72.761722 C534

[7] Jian Ma and Zengqi Sun. Copula component analysis. CoRR, 2007.
http://arxiv.org/abs/cs/0703095 C534

[8] Erik G. Miller and John W. Fisher III. ICA using spacings estimates of
entropy. Journal of Machine Learning Research, 4:1271–1295, December
2003.
http://jmlr.csail.mit.edu/papers/v4/learned-miller03a.html

C534

[9] R. B. Nelsen. An introduction to copulas. Springer-Verlag New York,
Inc., 1999. doi:10.1007/0-387-28678-0 C527, C528
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