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Detecting the phenomenon of strange
non-chaotic attractors

Alan Oxley1
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Abstract

I comment on how chaos might be defined. A sample of dynamical
systems that have quasi-periodic forcing functions is then considered.
The normal approach found in the literature is to start with an ordinary
differential equation, change to a difference equation, and then plot a
graph. The question of how to detect a strange non-chaotic attractor
without the underlying ordinary differential equation is posed and some
pointers are given as to a possible method of solution using statistical
analysis.

Contents

1 Introduction C613

2 Related work C615
2.1 SNAs and statistical analysis . . . . . . . . . . . . . . . . . C618

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2454

gives this article, c© Austral. Mathematical Soc. 2010. Published August 25, 2010. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2454


1 Introduction C613

3 Methodology C618
3.1 An actual workload trace . . . . . . . . . . . . . . . . . . . C618
3.2 A synthetic trace possessing an SNA . . . . . . . . . . . . C619

4 Results C620

5 Conclusion C622

References C623

1 Introduction

This article concerns dynamical systems. In a chaotic system, a small change
in the initial conditions has a significant effect on the future states of the
system. This property is termed “sensitive dependence on initial conditions”
which is defined as follows.

• X is a set, x ∈ X.

• N is the neighbourhood of x, whose points are within a distance of δ
from x; that is, if y ∈ N then |x− y| < δ.

• f : X → X has sensitive dependence on initial conditions if there exists
ε > 0 such that for all x ∈ X and all δ > 0 there exists a point y ∈ N
and a value n > 0, such that

|fn(x) − fn(y)| > ε ,

where fn(x) and fn(y) are the nth iterates (an nth iterate is the nth state
that the system is in after n equal incremental time periods.)

Some dynamical systems have an attractor of the type referred to as a ‘strange
non-chaotic attractor’ (sna). Let us focus on a range of dynamical systems
that often have snas. The range we choose is one where the forcing function
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is quasi-periodic. An example of such a function is

sin(2πt) + 3 cos(2πωt).

With such a system, the usual approach is to change from considering an
ode to considering a difference equation. We plot a graph in order to gain an
understanding of the shape of the attractor. Let us assume that our original
ode has y as the dependent variable and t as the independent variable. We
do not plot y versus t (on the horizontal axis), instead we plot y versus (ωt
mod 1). This is referred to as the stroboscopic map.1 Before constructing
the plot we need to convert our original ode to a difference equation. We
are interested in how y varies over the stroboscopic map. (ωt mod 1) varies
from 0 to 1 even though t ranges from 0 onwards. In view of this it is
preferable to define the variable

x = ωt mod 1 .

We are interested in discrete values of t = 1, 2, . . . and so we re-write the
above equation as

x0 = 0 , xn+1 = xn +ω mod 1 .

The y values can be written in the form

yn+1 = g(xn,yn).

The description above considered a time series where the value of a dependent
variable has been recorded (or generated) at fixed time intervals. The work
described here assumes that we recorded the values by observing a dynamical
system. Further, it is assumed that it is difficult, or impractical, to formulate
a mathematical model for the dynamical system under study. Our work

1Our choice ofωt is based on the above example where the frequencies of the components
differ by a factor of ω. Also, the amplitude of the cos term is three times that of the
sin term and so is the major contributor to forcing.
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describes a preliminary study into the use of statistical methods to detect the
sna ‘pattern’ in raw data.

The detection of patterns in large volumes of data gathered from dynamical
systems has practical applications. Let us take a computer grid, for example.
A computer grid is a network of computers in which the resources are pooled.
‘Jobs’ enter the grid and a software manager decides which computer the job
is to be allocated to. Jobs may even be split up and the parts allocated to
different computers. The problem of how best to schedule jobs on a grid is an
open research question. If we develop a new scheduling algorithm, then we
would wish to evaluate it to determine whether or not it is superior to existing
algorithms. We can use example data gathered from live grids for this testing
purpose. Such data are termed ‘workload traces’. However, unless we are
able to statistically analyse a trace to determine what patterns lie therein,
then it is possible that the traces that we try are all statistically similar, in
some sense, and not representative of the variety of traces that the algorithm
should be able to handle. If we perfect our statistical analysis of traces, then
we can begin to generate synthetic traces having any property or pattern that
we wish.

2 Related work

There has been some difficulty in defining chaos. As an example Banks
et al. [1] criticises an earlier definition. Let us try to establish when the
dynamics is chaotic. We looked at a property of chaos—the system has
sensitive dependence on initial conditions. Often researchers assumed that
this property is a sufficient condition for chaos. Let us consider another
property of chaos. In a chaotic system, it is only possible to predict the states
of the system in the very near future, if at all. However, it is possible for
a dynamical system to have sensitive dependence on initial conditions but
for n to be very large. It is therefore possible to have a definition of chaos
in which sensitive dependence on initial conditions is a necessary but not
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sufficient condition. It could be argued that for a system to be chaotic there
must be sensitive dependence on initial conditions and that changing the
initial conditions manifests itself in a rapid, in some sense, spatial difference
in the resultant states. To check whether the change is rapid enough we could
calculate the Liapounov exponents. Having positive exponents indicates a
rapid change.

Examples of snas have been given by Keller [7] and Glendinning [6] for
example. Let us consider the example

yn+1 = 2β cos(2πxn) tanhyn , β > 0.

We see that |yn+1| < 2β. Glendinning [4] investigated the attractors associated
with this difference equation.

Cases giving simple attractors There are two cases

1. y1 = 0 and y2,y3, . . . = 0.

2. y1 6= 0, β < 1. The attractor is 0 and y is stable about 0.

Case giving complicated attractors This occurs when y1 6= 0 , β > 1 .
The attractor is difficult to describe because of its complexity. Figure 1 shows
an example for

β = 2 , ω =
(
√
5− 1)

2
.

We can clearly see the shape to which the y-values are attracted. Let us recap.
We stated in the Introduction that we begin with an ode in which y is the
dependent variable and t is the independent variable. We also stated that
we are only interested in discrete values of t = 1, 2, . . . . If we were to plot a
graph of y versus t, or a part of this graph, then the eye would be unable
to detect a pattern. By using the modulo arithmetic on the t-values we are
effectively overlapping the graph on itself. Doing this reveals the attractor.
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Figure 1: A plot of 2β cos(2πxn) tanhyn for points (xn,yn), n =
1, 2, . . . , 20, 000
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Effect on changing initial conditions Glendinning et al. [5] shows that
this case has ‘sensitive dependence on initial conditions’.

2.1 SNAs and statistical analysis

The statistical analysis of Time Series is a well established field [2]. Much
work has been done on the analysis of some types of computer networks
and parallel computers [3, 9, 10]. Relatively little work has been done on
the analysis of workload traces for grids. That which has been done [8] has
focused on identifying some patterns that occur in the data. It analyses a
trace called lcg1 taken from the Large Hadron Collider Grid. The patterns
include pseudo-periodicity, long range dependence, and multifractals. There
is an absence of detail in the article which makes it difficult should one wish
to duplicate the work. I have been unable to find other articles by this author,
or others, which give these details. Little, or no, work seems to have been
done on identifying the presence of attractors.

3 Methodology

3.1 An actual workload trace

As part of our work I felt it necessary to gain proficiency in the practical
ways of using statistical methods to analyse traffic in a grid environment. To
give an indication of what this involves, in this section I explain processing
of trace lcg1. We are interested in analysing the job arrival times for both
the trace as a whole and for some virtual organisations (vos). We performed
five analyses. In Analysis I we wished to plot two graphs, one showing the
distribution of jobs amongst the vos, and another showing the distribution of
jobs amongst the users. In the remainder of the analyses we were interested
in trying to identify patterns in job arrival times. Initially, in Analyses II
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to IV, we did not consider the whole trace. Instead we considered one vo,
whose id is ’g1’ and whose name is ’lhcb’. Later, in Analysis V, we considered
the whole trace.

In Analysis II we looked at the time between each job arriving and the arrival
of the succeeding job, referred to as the ’inter-arrival time’. We plotted
a histogram showing the distribution of the inter-arrival times. Next we
found the autocorrelation of the job inter-arrival times, at different lags.
Subsequently we performed a Fourier analysis on the autocorrelation output.

In Analyses III and IV, rather than considering the job arrival times as our
raw data, we used the number of jobs arriving in each 64 second period as
the raw data. We refer to this new data as ’job counts’. In Anaysis III we
plotted the distribution of job counts. Next we performed an autocorrelation
of the job counts. In our next task we performed a Fourier analysis of the job
counts. We found the power spectral estimates. In Analysis IV we found the
entropy of the power spectral estimates.

In Analysis V we considered the trace as a whole. We plotted the distribution
of job counts for the whole trace. Next we found the autocorrelation of the
job counts, at different lags. Subsequently we performed a Fourier analysis
on only 800 values of the autocorrelation output.

3.2 A synthetic trace possessing an SNA

In the example above we considered a time series where the value of a
dependent variable has been recorded (or generated) at fixed time intervals.
The 20, 000 values used to draw Figure 1 were generated from a difference
equation. In what follows, let us assume that we recorded these 20, 000 values
by observing a dynamical system. Further, let us assume that it is difficult,
or impractical, to formulate a mathematical model for the dynamical system
under study. The following work describes a preliminary study into the use
of statistical methods to detect the sna ‘pattern’ in raw data. We use some
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statistical methods that have been used in the analysis of patterns occurring
in the workload traces of grids.

Let us consider the 20, 000 y-values used to draw Figure 1. To say that
these are the values of a dependent variable taken at 20, 000 points in time is
only one way of interpreting these values as a time series. Let us consider
an alternative meaning. The y-values could indicate the time between job
arrivals, called the ‘interarrival time’. The first five y-values from the 20, 000
are 0.3, 1.16525, −2.42666, −0.34429 and −0.8063. As they stand the values
do not make sense in the context of job arrivals because an interarrival time
cannot be negative. The number −4 is a lower bound to the 20, 000 values
so if we add 4 to each of the values then all are positive. The first five values
become 4.3, 5.16525, 1.573338, 3.655712 and 3.193696. The meaning of these
numbers is now described. We start a clock at time 0. After 4.3 seconds a
job arrives on the grid. 5.16525 s later another job arrives. 1.573338 s later a
third job arrives, and so on. Even though the data has a different meaning
and the values have been transformed, the sna pattern, if present, will be
preserved.

The problem is now one of trying to detect the presence or otherwise of an
sna pattern using statistical analyses. The work which follows is an initial
attempt to do this using a few of the many statistical methods at our disposal.

4 Results

If we try to plot the transformed data as a time series with the x-axis
representing the arrival time of a job and the y-axis representing the number
of jobs then all the y-values will be one and the x-values will be unequally
spaced. We change this into a time series having equal time increments by
considering a fixed time quantum, say 64 s, and counting the number of jobs
that arrive in each 64 s period. This histogram is shown on the top left of
Figure 2. One statistical method is to perform a correlation of data with
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Figure 2: The job arrival times, autocorrelation (acf), and discrete Fourier
transform (dft) for the trial data
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itself—an autocorrelation. With a Time Series we correlate the original data
with a time-shifted version of itself (called a ‘lag’). A lag of one of the data in
our study compares the original data with the data shifted by 64 s. I repeat
this process for a number of different lags. This produces the top right graph
of Figure 2.

Another statistical method is to perform Fourier analysis on the acf. The
algorithm used to evaluate the magnitude of the sine waves at the various
frequencies is the Fast Fourier Transform (fft). This algorithm accepts as
input a set of data points that number a power of two. For example, the
algorithm will accept 512 data values or 1, 024 data values. In the top right
graph of Figure 2 we have 800 values. I resort to zero-padding, that is inserting
224 zeros. Normally this is done by having half of them on the left and half
on the right. Unfortunately, this zero-padding is likely to be too drastic an
approach and we have to perform what is known as windowing. This means
that we give weights to the y-values in the top right graph of Figure 2. The
y-values at the ends are almost zero whilst those in the middle are almost
one. The analysis is complicated by the fact that many windowing methods
exist—rectangular, Hanning, Hamming, Blackman, and so on. Furthermore,
we can apply windowing to all 800 values or fewer. We could apply windowing
to the 15%, say, of the values at the left hand end and the 15% at the right
hand end. An example power spectrum is shown in the bottom graph of
Figure 2.

5 Conclusion

The topic of chaos has been described as well as the phenomenon known as a
Strange Non-chaotic Attractor. An example of an sna has been given. These
descriptions of chaos and snas add to the body of knowledge on these topics.

The significance of our work is threefold. Firstly, we have found that the
detection of attractors in network traffic is a topic that has been neglected.
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Secondly, we have shown how to transform an analytical description of an
sna into a workload trace. Thirdly, we have drawn attention to the fact
that whilst we can observe properties such as self similarity and long range
dependence by looking for traits in specific statistical graphs, there may be
other properties, or patterns, inherent in the data for which we do not, as
yet, know how these manifest themselves in statistical graphs. In particular,
constructing a synthetic workload that possesses an attractor enables us to
study how this pattern manifests itself. In the future, when we know the
answer to this, we will be able to analyze actual workload traces to determine
whether or not an attractor exists.

The problem of how one goes about detecting the presence of an sna in raw
data is posed. A small number of statistical methods which might be suitable
for further investigation are described. However, even if the methods are the
ones to use there are still many options when using them. In grouping data
we must choose an appropriate size for the interval. In the example described,
64 s was chosen fairly arbitrarily. This is an analogous problem to finding the
correct width of a column in a histogram. If the column width is too small or
too large then the pattern is hidden.

When using the acf a window size of 800 was chosen, once again fairly
arbitrarily. Work needs to be undertaken on finding out the best size. Finally,
when we calculate the Power Spectrum we need to find out which windowing
technique is superior and to what percentage of the original data it should be
applied.
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