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The optimal value of circular reserve for
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Abstract

We consider the Symmetrical Hierarchical Network and analyse
its survivability under uncertainty conditions. A formula calculates
the optimum value of circular reserve of the symmetrical hierarchical
network. We take into account the possibility of optimising the flow
distribution after the fault. We suppose that the remaining capacity
will be known. The guaranteed evaluation of the functional capability
of the symmetrical hierarchical network assumes finding the worst
distribution of the destruction.
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1 Introduction

An arbitrary multi-commodity flow network (mfn) [15] is determined by two
graphs, physical G and logical P, on the same set V of nodes. Edges rk of
graph G mean physical lines of communications between the nodes from V ,
and they are ascribed with non-negative numbers yk called the capacity of the

edges rk, k = 1, . . . ,n . Edges pi, i ∈M
def
= {1, . . . ,m} of graph P correspond

to logical connections between certain pairs of nodes (source-sink pairs). This
means that there are demands of flow transmission from one node to the
other of pi through the edges of network graph G. Thus, each pi is specified
by source-sink pair νsi , ν

t
i ∈ V and positive demand di.

A multi-commodity flow network is called symmetrical hierarchical network
(shn) if its logical graph has the structure of a star, that is, the source-sink
pairs are given in the form (ν0,νi), i ∈M , with the common source ν0 and
all demands are equal to d. The physical graph of a shn usually repeats
its logical structure and also is a star network: G = 〈V ,E〉, where V =
{v0, v1, . . . , vm} and E = {e1, e2, . . . , em} where ei = (v0, vi). We considered a
formal hierarchical network [2].

Star topology is the most common type of network topology that is often used
in computer networks and is typical for electricity networks. Star networks
were proposed as an attractive alternative to the well-known hypercube models
for interconnection networks. Extensive research has been performed that
shows star networks are as versatile as hypercubes [5].

Sterbenz et al. [17] provided an architectural framework for resilience and
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survivability in communication networks and provides a survey of the disci-
plines that resilience encompasses, along with significant past failures of the
network infrastructure.

Morehead and Noore [14] studied the resiliency of hierarchical networks and
compared the results with random networks and scale-free networks. They
used a load-based attack model and extended the dynamic model to cascading
attacks.

Chang and Hwang [4] proposed an analytical model for evaluating the perfor-
mance of adaptive hierarchical networks with multiple classes of traffic. They
studied the reduced load approximation model for multi-rate loss networks,
and then proposed a novel performance evaluation model for networks with
hierarchical routing.

Manish Garg and Cole Smith [7] considered the design of a multi-commodity
flow network, in which point-to-point demands are routed across the network
subject to link capacity restrictions. Such a design must build enough capacity
and diverse routing paths through the network to ensure that feasible multi-
commodity flows continue to exist, even when components of the network
fail. They examine several methodologies to optimally design a minimum cost
survivable network that continues to support a multi-commodity flow under
any of a given set of failure scenarios, where each failure scenario consists of
the simultaneous failure of multiple arcs.

Survivable system and survivable network have been designed and evaluated
for many years. The concept of survivability is fundamental to many of the
natural, social planning and engineering sciences, but its definition varies
depending on the context of applications [8]. In many network design models,
network survivability is defined as the ability of a network to maintain or
restore an acceptable level of performance in the event of deterministic or
random failures [18].

I summarise the many definitions of survivability as the following: Survivabil-
ity is the system’s ability to continuously deliver services in compliance with
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the given requirements in the presence of failures and other undesired events.

Network survivability is critical component of the global telecommunication
infrastructure [16]. Network survivability was defined for an ip-over-wdm
network as the ability of the network to recover from any single physical link
failure [11]. Kan et al. [11] identified two criteria for satisfying in order to
ensure network survivability:

1. the source and destination of every traffic demand must remain con-
nected after any physical link failure; and

2. the spare capacity in the network must be sufficient to support all of
the disrupted traffic.

The first criterion can be satisfied if the logical topology remains connected
after any physical link failure. A routing was called survivable if any physical
link failure leaves the logical topology connected. The problem of finding such
a routing of the logical links on the physical topology has been studied [12].
However, the network must also have sufficient spare capacity to reroute the
disrupted traffic. Determining where to place spare capacity in the network
and how much spare capacity must be allocated to guarantee the restoration
of the network against single link failures is called the spare capacity allocation
problem.

Network survivability is an important requirement in high speed optical
networks. The survivability of these networks from the failure of a single
component such as a link or a node needs some typical approaches. Kalamani,
Palaniswami and Nagarajan [10] considered double link failures in a hypercube
optical network and presented three loopback methods suggested by the
researchers for handling such failures. In the first two methods, two edge-
disjoint backup paths are computed for each link for rerouting traffic when
a pair of links fails. These methods require the identification of the failed
links before recovery can be completed. The third method requires the pre-
computation of a single backup path and does not require link identification
before recovery. Protection capacity, restorability, worst-case and average hop-
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length, worst-case and average number of connections are used as performance
measures in their analysis.

Heegaard and Trivedi [9] considered the network’s ability to survive major
and minor failures in network infrastructure and service platforms that are
caused by undesired events that might be external or internal. Survival means
that the services provided comply with the requirement also in presence of
failures.

Network survivability models considered by Heegaard and Trivedi [9] treat
networks exposed to undesired events that cause links and nodes to fail,
which are typically followed by a sudden change in the availability of network
resources such as bandwidth of the transmission links, queuing positions
(memory), and processor capacity. Gradually the resources are restored
through rerouting and by restoration of the failed links and nodes, which
results in restored performance.

Chen, Garg and Trivedi [6] propose a quantitative approach to evaluate
network survivability. They perceive the network survivability as a composite
measure consisting of both network failure duration and failure impact on
the network.

The problem of the efficiency analysis of multiuser network systems was
considered by Malashenko and Novikova [13] under conditions of nonrandom
external perturbations, which decrease the edge capacity of the physical
graph of the network. The formulation of the corresponding problem of the
feasibility of multi-commodity flow networks for the known demand vector
was proposed.

It is known that the physical structure of a star possesses poor properties of
survivability. To create an additional circular structure connecting all the
sinks may raise the survivability of shn.

We considered the effectiveness of radial reserve to raise the survivability of
shn taking account of destruction of the main radial edges, and the radial
reserve [1]. With the sufficient capacity of circular reserve for hierarchical
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network, we can obtain the maximum level of demand satisfaction [2]. We
compared the efficiency of sufficient circular and radial reserve to raise the
survivability of shn [3]. Here we find the optimal value of circular reserve of
shn that guarantee the maximum level of demand satisfaction.

Denote by Ḡ the shn with additional circular reserve, that is, Ḡ = 〈V , Ē〉 ,
Ē = E ∪ E0 , E0 = {e01, e

0
2, . . . , e0m}, where e0i = (vi, vi+1), i 6= m , and e0m =

(vm, v1). Let c = (c1, . . . , cm) be a capacity vector for circular edges of Ḡ.

Let zj be the amount flow between nodes ν0 and νj and fji denote the share
of flow zj between ν0 and νj which passes by edge (ν0,νi). The variables
fj→i and fj←i denotes the share of the flow zj between ν0 and νj that passes
by circular edges clockwise and counter-clockwise respectively.

In these variables the flow constraint conditions for shn are
m∑
i=1

fji = zj for all j ∈M ,

fji = f
j→
i + fj←i for all i, j ∈M, i 6= j, fj→j = fj←j = 0 , (1)

and the capacity constraints for shn for all i ∈M are

m∑
j=1

fji 6 yi , (2)

i−1∑
j=1

(
i−1∑
l=j+1

fj→l +

j−1∑
l=1

fj←l +

m∑
l=i

fj←l
)

+

m∑
j=i

(
i−1∑
l=1

fj→l +

m∑
l=j+1

fj→l +

j−1∑
l=i

fj←l
)

6 ci . (3)

Denote by f ∈ R3m2

+ the set of flow variables fji, f
j→
i and fj←i , i ∈M and j ∈M ,

that satisfy (1). The constraints (1), (2) and (3) define the polyhedron of
feasible flow distributions

F(y, c) = {f > 0 | subject to(1), (2), (3)}.
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2 Competitive distribution of flows

Let d̄ = (d, . . . ,d) and c = (c1, . . . cm) be the initial capacity vectors for
radial and circular edges of shn respectively, and ȳ = (d̄, c).

Denote by Z(ȳ) the set of all feasible multiflows z = (z1, . . . , zm) in the
network with capacity vector ȳ, that is,

Z(ȳ) = {z > 0 | there exists f ∈ F(ȳ) : z = z(f)} , (4)

and define

θ0 = θ0(ȳ) = max
f∈F(ȳ)

min
i∈M

zi(f)

d
. (5)

The value of θ0 shows the measure of effectiveness functioning of shn.

If f0 be the optimal solution of (5), then f0 is called the competitive distribution
of flows.

In the case m = 1 , (5) is a well known problem of flow maximisation. For
m > 1 it formalises the concurrent flow problem. A multi-flow achieves
demand satisfaction if it ships an amount of each commodity equal to its
demand from its source to its sink while obeying the capacity constraint. This
corresponds to θ0 > 1 . Otherwise, an arbitrary concurrent flow distribution f0

(a maximiser in (5)) may be not the best for certain network users.

The function θgγ(ȳ) denotes the guaranteed level of demand satisfaction
depending on reserve capacity c and demands d and is defined as

θgγ(ȳ) = min
y∈Y(γ)

θ0(y, c) = min
y∈Y(γ)

max
f∈F(ȳ)

min
i∈M

zi(f)

d
, (6)

where

Y(γ) =
{
y > 0 |

m∑
i=1

yi = (1− γ)md, yi 6 d for all i ∈M
}

. (7)
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Here γ ∈ (0, 1) is a parameter which characterises the power of network
destruction. It indicates what part of the total capacity of radial edges may
be lost.

The Survivability of shn is defined by θgγ(ȳ). Note that θgγ(ȳ) 6 1 − γ ,
γ ∈ (0, 1).

In this article a formula is given for calculating the circular reserve value which
is necessary and sufficient to guarantee the level θgγ(ȳ) = 1− γ , γ ∈ (0, 1).

We introduce C(γ), the set of possible alternatives of a sufficient ring redun-
dancy,

C(γ) =
{
c = (c1, . . . , cm) | (1− γ)d̄ ∈ Z(y, c) for all y ∈ Y(γ)

}
.

Theorem 1 Let d̄ = (d, . . . ,d) and c = (c1, . . . , cm) be the initial capacity
vectors of radial and circular edges of shn respectively, and t0 be the optimum
value of circular reserve for shn that guarantees the level θgγ(ȳ) = 1 − γ ,
γ ∈ (0, 1). Then

t0 = min
c∈C(γ)

max
i∈M

ci =

{
1
2
(m− d(1− γ)me)d(1− γ) , l > 1− γ ,

1
2
b(1− γ)mcdγ , l 6 1− γ ,

(8)

where l = (1− γ)m− b(1− γ)mc and bac(dae) is the nearest integer value
less (greater) than or equal to a.

Proof: We first show that

there exists c0 = (c01, . . . c0m) ∈ C(γ) : for all i ∈M c0i 6 t
0.

This means that t0 is a sufficient capacity for circular edges in order to
guarantee the maximum level of demand satisfaction. Let c0 = (t0, . . . , t0).
We must prove that

for all y ∈ Y(γ) there exists f ∈ F(y, c0) : z(f) = d̄(1− γ).
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Assume that y = (y1, . . . ,ym) ∈ Y(γ). Define f ∈ R3m2

+ , the set of variables

fji, f
j→
i and fj←i , i, j ∈M ,

fj→i = fj←i =

{
−titj

[
2
∑

r∈I+ tr
]−1

, i ∈ I+, j ∈ I−,

0, otherwise,
(9)

fji = f
j→
i + fj←i , i 6= j , (10)

fjj =

{
yj, j ∈ I−,

d(1− γ), j ∈ I+,
(11)

where
ti = yi − d(1− γ), I+ = {i | ti > 0}, I− =M \ I+. (12)

Now we show that z(f) = d̄(1− γ).

zj =

m∑
l=1

fjl =

m∑
l=1, l6=j

(fj→l + fj←l ) + fjj

=
∑

l∈I+, l6=j

(fj→l + fj←l ) +
∑

l∈I−, l6=j

(fj→l + fj←l ) + fjj

=

{
d(1− γ), j ∈ I+,∑

l∈I+ −tltj
[∑

r∈I+ tr
]−1

+ yj , j ∈ I−,

=

{
d(1− γ), j ∈ I+,

−tj + yj, j ∈ I−,

=

{
d(1− γ), j ∈ I+,

d(1− γ)m, j ∈ I−,

= d(1− γ) for all j ∈M .

Now we show that
∑

i∈I+ ti = −
∑

i∈I− ti .

y ∈ Y(γ) ⇒ ∑
i∈M

yi = (1− γ)md ⇒∑
i∈M

(
yi − (1− γ)d

)
= 0
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⇒ ∑
i∈M

ti = 0 ⇒∑
i∈I+

ti = −
∑
i∈I−

ti. (13)

Let us now check the capacity constraints on the radial and circular edges of
shn.∑
j∈M, j 6=l

(fj→l + fj←l ) + fll
(9)−(11)

=

{∑
j∈I− −tltj

[∑
r∈I+ tr

]−1
+ fll , l ∈ I+,

fll , l ∈ I− ,

(13)
=

{
tl + f

l
l , l ∈ I+,

fll , l ∈ I−,

=

{
yl − d(1− γ) + d(1− γ), l ∈ I+,

yl , i ∈ I−,

= yl for all l ∈M .

We verified the capacity constraints on the radial edges.

By (3) and (9), the capacity constraints on the ring becomes

i−1∑
j=1

(
m∑

l=1, l6=j

fj→l
)

+

m∑
j=i

(
m∑

l=1, l 6=j

fj→l
)

6 ci for all i ∈M ,

and hence
m∑
j=1

m∑
l=1, l6=j

fj→l 6 ci for all i ∈M .

Thus for the checking of the capacity constraints on the ring, we must show
that

m∑
j=1

m∑
l=1, l 6=j

fj→l 6 ci = t
0 for all i ∈M , for all y ∈ Y(γ). (14)

By (9) and (13)

m∑
j=1

m∑
l=1,l 6=j

fj→l =
∑
j∈I−

∑
l∈I+

−
tltj

2
∑

r∈I+ tr
=
1

2

∑
l∈I+

tl . (15)
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To prove (14), we show that

max
y∈Y(γ)

∑
l∈I+

tl = 2t
0. (16)

max
y∈Y(γ)

∑
l∈I+

tl = max
y∈Y(γ)

∑
i∈M

[yi − d(1− γ)]
+, (17)

where [·]+ = max(0, ·).

Define ψl(y) = [yl − d(1− γ)]
+. For all l ∈M , ψl(y) is a convex function

and therefore
∑

l∈Mψl is also a convex function.

Let

I1 = {i | yi = d, y ∈ Y(γ)},
I2 = {i | yi = 0, y ∈ Y(γ)},
I3 = {i | 0 < yi < d, y ∈ Y(γ)}.

Note that, y ∈ Y(γ) is an extreme point of Y(γ) if and only if y ∈ S def
= {y ∈

Y(γ) | |I3| 6 1}.

Another presentation of S is S =
{
y ∈ Y(γ) | y = (d, . . . ,d,yq, 0, . . . , 0) or

vectors given from any permutation of y
}

, where 0 6 yq 6 d ,

yq = md(1− γ) − bm(1− γ)cd , (18)

q = |I1|+ 1 = b(1− γ)mc+ 1 . (19)

Now we show that the value of
∑m

i=1ψi(y) for all y in S is the same. Assume
that this is not so. Then two cases are possible:

1. yq > d(1− γ);

2. yq 6 d(1− γ).
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In Case 1 for all y ∈ S we have∑
i∈M

ψi(y) =
∑
i∈M

[yi − d(1− γ)]
+

= |I1|
(
d− d(1− γ)

)
+ yq − d(1− γ)

= b(1− γ)mcdγ+md(1− γ) − b(1− γ)mcd− d(1− γ)

= (m− 1)d(1− γ) − b(1− γ)mcd(1− γ)
= (m− 1− b(1− γ)mc)d(1− γ)
= (m− d(1− γ)me)d(1− γ). (20)

In Case 2 for all y ∈ S∑
i∈M

ψi(y) =
∑
i∈M

[yi − d(1− γ)]
+ = |I1|dγ

= b(1− γ)mcdγ . (21)

Clearly, the value of
∑

i∈Mψi(y) for any y ∈ S in Cases 1 and 2 is not depen-
dent on y and this value is the same for all y belong to S. Since

∑
i∈Mψi(y) is

a convex function and Y(γ) is a convex polyhedron, then the optimal solution
for (17) occur at any extreme point of Y(γ).

By (17), (18), (20) and (21) we obtain

max
y∈Y(γ)

∑
l∈I+

tl =


(m− d(1− γ)me)d(1− γ)

if (1− γ)m− b(1− γ)mc > 1− γ ,

b(1− γ)mcdγ
if (1− γ)m− b(1− γ)mc 6 1− γ ,

= 2t0 (22)

By (14) and (22) we verified the capacity constraints on the ring (circular
edges) and therefore

c = (t0, . . . , t0) ∈ C(γ).
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Now we show for all c = (c1, . . . , cm) ∈ C(γ) there exists l ∈M : cl > t0.

Let

c = (c1, . . . , cm) ∈ C(γ) , ỹ = (d, . . . ,d, ỹq, 0, . . . , 0) ∈ Y(γ) ,

where q = [(1− γ)m] + 1 , ỹq = (1− γ)md− b(1− γ)mcd . Two cases are
possible

1. ỹq > d(1− γ);

2. ỹq 6 d(1− γ).

In Case 1 since c ∈ C(γ), therefore for all f ∈ F(ỹ, c) from (3), for i = q+ 1 ,

q∑
j=1

(
q∑

l=j+1

fj→l +

j−1∑
l=1

fj←l +

m∑
l=q+1

fj←l
)

+

m∑
j=q+1

(
q∑
l=1

fj→l +

m∑
l=j+1

fj→l +

j−1∑
l=q+1

fj←l
)

6 cq+1 . (23)

Since fj→l , fj←l for all l, j are positive,

m∑
j=q+1

q∑
l=1

fj→l 6 cq+1 .

Similarly, the below inequality can be obtained for i = 1 .

m∑
j=q+1

q∑
l=1

fj←l 6 c1 .

Thus
m∑

j=q+1

q∑
l=1

(fj→l + fj←l ) 6 c1 + cq+1 . (24)
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Since ỹ = (d, . . . ,d, ỹq, 0, . . . , 0), ỹq > d(1−γ) , the amount of flow that can
pass by edge l, l = 1, . . . ,q , (that is,

∑m
j=q+1 f

j
l) is equal to yl−d(1−γ) and

m∑
j=q+1

q∑
l=1

(fj→l + fj←l )

=

m∑
j=q+1

q∑
l=1

fjl =

q∑
l=1

(
yl − d(1− γ)

)

=

q−1∑
l=1

(
d− d(1− γ)

)
+ ỹq − d(1− γ)

= (q− 1)dγ+ ỹq − d(1− γ)

= b(1− γ)mcdγ+ (1− γ)md− b(1− γ)mcd− d(1− γ)

= d(1− γ)
(
(m− 1) − b(1− γ)mc

)
= d(1− γ)

(
m− d(1− γ)me

)
. (25)

From (24) and (25) we obtain

d(1− γ) (m− d(1− γ)me) 6 c1 + cq+1.

Thus either

c1 >
d(1− γ)

(
m− d(1− γ)me

)
2

,

or

cq+1 >
d(1− γ)

(
m− d(1− γ)me

)
2

,

hence there exists l ∈M : cl > t0 .

In Case 2, similar to Case 1, we derive the two inequalities

m∑
j=q

q−1∑
l=1

fj→l 6 cq , and

m∑
j=q

q−1∑
l=1

fj←l 6 c1 .
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Thus
m∑
j=q

q−1∑
l=1

(fj→l + fj←l ) 6 c1 + cq . (26)

On the other hand,

m∑
j=q

q−1∑
l=1

(fj→l + fj←l ) =

q−1∑
l=1

(
d− d(1− γ)

)
= (q− 1)γd

= b(1− γ)mcγd . (27)

From (26) and (27) either

c1 >
b(1− γ)mcdγ

2
or cq >

b(1− γ)mcdγ
2

.

Hence in Case 2, as well as, Case 1

there exists l ∈M : cl > t
0,

and therefore for all c ∈ C(γ) there exists l ∈M : cl > t0 . This completes
the proof of the theorem. ♠

3 Numerical example

Let d̄ = (10, 10, 10, 10) be the initial capacity vector of shn, and γ = 0.1 . In
this case we have m = 4 and

Y(0.1) =
{
y = (y1,y2,y3,y4) |

4∑
i=1

yi = (1− 0.1)(4)(10) = 36,

0 6 yi 6 10, i = 1, 2, 3, 4
}

,

l = (1− γ)m− b(1− γ)mc = 0.9(4) − b0.9(4)c = 3.6− b3.6c = 0.6 .
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Since l < 1− γ = 0.9 , the optimal value for circular reserve is

t0 =
b0.9(4)c10(0.1)

2
= 1.5 .

If we take c = (1.5, 1.5, 1.5, 1.5) as a capacity vector of circular edges, then
we transmit flow to each sink through the remaining radial edges and circular
reserve that guaranteed θgγ(d̄, c) = 0.9 . For example, suppose that y =
(6, 10, 10, 10). In this case

4∑
i=1

yi = 36 = (1− 0.1)4(10)⇒ y ∈ Y(0.1).

We take

f11 = 6, f22 = f
3
3 = f

4
4 = 9,

f1→2 = 0, f1←2 = 1, f1→3 = 0.5, f1←3 = 0.5, f1→4 = 1, f1←4 = 0,

fj→i = fj←i = 0 for i = 1, 2, 3, 4 and j = 2, 3, 4.

The maximum flow transmitted by each circular edge is less or equal to 1.5.
In addition, we have

z1 =

4∑
i=1

f1i = f11 + (f1→2 + f1←2 ) + (f1→3 + f1←3 ) + (f1→4 + f1←4 )

= 6+ (0+ 1) + (0.5+ 0.5) + (1+ 0) = 9 ,

and similarly, we obtain
z2 = z3 = z4 = 9 .

Thus θ0(y, c) = mini zi/10 = 0.9 .

4 Conclusion

Physical star structures have poor survivability characteristics. By creating
a supplementary ring structure with sufficient capacity, that links all the
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subordinate nodes, we can duplicate the messages in the event of loss of
communication between the centre and one or more nodes and guarantee the
maximum level of effectiveness of the functioning of the shn.
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