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Finite element modelling of the interphase
region on the mechanical behaviour of a
composite containing micrometer sized

spherical particles
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Abstract

When a particle or filler is embedded into a polymer matrix, a third
region is generated between the filler and matrix due to their chemical
reaction between. This region is known as the interphase region. The
properties of the interphase are affected by the material properties of
the particles and the polymer matrix as well as the volume fraction
of the composite. We implement the interphase mathematical model
into the finite element method algorithm to investigate the effect of the
interphase region on the deformation behaviour of the composite. The
properties of the interphase at the matrix boundary are assumed to be
smooth and continuous, while discontinuous at the particle boundary.
The finite element algorithm employs Galerkin weak formulation with
quadratic shape functions. The displacement, strain and stress of
the composite are calculated along the radial axis originated from the
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centre of a particle. The finite element modelling results are presented.
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1 Introduction

Adding fillers to a polymer matrix was only meant to decrease the price
of the product. However, soon it was discovered that the properties of the
resultant composite altered significantly from the properties of the matrix
polymer, such as flame retardancy [5], improved overall composite proper-
ties, decreased specific heat, increased heat conductivity, increased stiffness
properties and strength [1, 5].

The overall properties of a particle-reinforced composite are difficult to de-
termine due to the complex bonding between the filler and matrix. In some
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research a nonrealistic perfect bonding between the filler and matrix was as-
sumed [6, 9]. A third region, the interphase, is generated when fillers are
added to a polymer matrix. The effects of the interphase on the overall
properties of the composite include changing the elastic properties [1, 3],
thermal expansion coefficient [4] and stress and strain behaviors [8]. In the
authors’ previous work [1, 7], an interphase mathematical model was estab-
lished based on a one dimensional, three phase, composite model. The math-
ematical model describes the properties and behaviour of the inhomogeneous
interphase region between a spherical micrometer sized particle and a poly-
mer matrix. Using the interphase mathematical model, the shear modulus
and Young’s modulus were calculated and compared well with experimental
results.

The one dimensional interphase mathematical model is implemented into
the Finite Element Method (FEM) algorithm based on the Galerkin Weak
formulation with quadratic shape functions. The displacement, strain and
stress distributions in the composite were obtained and presented.

2 The interphase model

The model of a representative portion of a three phase composite is shown in
Figure 1(a). When a spherical filler of radius r; is added to a polymer matrix,
an annular interphase region with the inner radius ¢ and outer radius r; is
created between the filler and the polymer matrix, of which the outer radius
is T, (Figure 1(a)). The material properties of the filler and polymer ma-
trix, such as the Young’s Modulus, Poison ratios and coefficients of thermal
expansion, are isotropic and of different constant values. However, the prop-
erties of the interphase region are inhomogeneous [2, 4] and some functions
of the spatial variable r (r; < r < 1;). The rate of change of an interphase
property at the boundary of the filler side is non-smooth and discontinuous;
while at the matrix side is smooth and continuous. Letting F;, () represent a
property of the interphase region, the smooth nature of F;(r) at the bound-
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FIGURE 1: Three phase spherical filler composite.

ary of the polymer matrix side gives dF;,(r;)/dr = 0. Thus, we defined the
governing equation of the interphase for the property [1]

dFint (T)
dr

where parameters 1 and y are arbitrary integers, and for simplicity, n = 1
and y = 1 were chosen [1]. The boundary conditions for equation (1) are

Fint(rf) - kFﬁ Fint (ri) - Fm; (2)

=AM (r;—r)e", 1€ [r T, (1)

where F; is a property of the filler; F,, is a property of the polymer matrix;
and k is a positive constant. A property of the composite is discontinuous
at the boundary of the filler and interphase except for k = 1, for which it
is continuous as Fy, (1) = F¢. Using the ratio | = Fyy(r¢)/Fm to describe the
state of discontinuity at the boundary of the filler and interphase [4], for a
given J, the value of k = J - F,,/F;. The arbitrary constant A in equation (1)
is determined once the state of discontinuity at the boundary of the filler and
interphase is defined.
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Solving equation (1) subject to the boundary conditions (2), the following
solution is obtained

Fine (1) = A{e" [—1"2 +(ri+2)(r— 1)] +e(2—1)}+Fn, TEInTL, (3)

where
A kFs — Fi
e[+ (ri+2) (1) +en(2—1)
Equation (3) describes a property of the interphase region as a function of
the spatial variable .

3 Formulation of displacement field

The three phase composite model is analysed in the spherical polar coor-
dinates (1,0, ¢) shown in Figure 1(b). Suppose that, by some means, the
composite is deformed so that its points undergo displacement. Let the dis-
placement of an arbitrary point be U = (u,,up, uy) referred to axes r, 0
and ¢, respectively. When the temperature is constant and deformation is
spherically symmetric, the displacement of the composite is independent of 0
and ¢. The strain ¢ is

_du,

u,
& = o =&p = —, €op = Epr = Erp = Oa (4)

dr’ T
where ¢,, €9 and g4 are the normal strains and €g¢, £¢r and &g are the shear
strains. Consequently, the stress is determined from Hooke’s law:

Ogp = Orp = Orp = 0,
E
(1+v)(1=2v)

E
(1T4+v)(1—2v)

o, = (1T —V)er + veg + vegl (5)

Og = 0¢p = [59 + VET] )
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where 0;, 09 and 0y, are the axial stresses, while 0gg, 04, and oyg are the shear
stresses. E and v are the Young’s modulus and Poison ratio, respectively.

Substituting equation (4) into equation (5) gives the stress in terms of dis-
placement in the radial direction only

d . du,
O‘T:X—ur—i-Yi, o‘e:ZU'_|_WE7
dr T dr T
where
(1 _Vw)Ew ZVwEw
X =Xy = L Y=Y, = ,
(] +Vw)(1 _sz) (1 +Vw)(1 _sz)
X Yo .
W=W, = , L=7Z,=— for w =f,1, m.
1—v, 2

Note that the material properties of the filler and polymer matrix E¢, E,, wr
and u,, are known constants, while the Young’s modulus and Poison ratios of
the interphase E; and p; are the variables of r and determined by equation (3).

The equilibrium equation for the stress distribution of the composite is

d du, d / u, 2(X—2)du, 2(Y—-W)
dr(Xdr>+dr<Y )+ T dr+ T2

w(0) =0,  ulrm) =er.

T

u, =0, (6)

4 The finite element algorithm

The interphase mathematical model is implemented into the FEM algorithm
to calculate the displacement along the radial axis (r direction). We dis-
cretize the r domain into N quadratic elements with a total nodal number
of 2N 4 1, Taking the piecewise quadratic functions P, (r) as the weighting
functions and r, the nodal coordinate of the corresponding node p, the weak
formulation of equation (6) is
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™ T d /odw d ooy 2(X—Z) du,
L [a <X$) e N R
+ L—ZV\/)W} Pp(r) dr =0, (7)

T

forp =1,2,...,2N + 1. Considering the essential boundary conditions at
both ends, we simplify equation (7) by integrating by parts to obtain

TN 2(X —Z) du, 2(Y —W)
[ ) wo
du, u,\ dip,(r) B
(e ) ] g

The approximate solution is assumed to be u, = Z?EH Uqpg(r) where U,

(q=1,2,...,2N + 1) are the nodal displacements. Substituting into equa-
tion (8) yields the following set of discretised equations

My Uq =L, forp,q=1,2,...,2N+1, 9)
where
T2N+1 2(X—272)d 20Y — W
[ (R 0 )
dg(r) Y d, (1)
— (X—(;T + ?d)q(r)) (;T 1 dr
and

Lo Jo ifp#EIN4T,
P lerm, ifp=2N41.

Note that the regions of the filler, interphase and matrix are discretised
into n, m and 1 elements with the equal length h; =r¢/n, h, = (r; —r¢)/m
and hz = (r,, — 1)/l in each region, respectively.

The axial strain and axial stress are found using ¢, = 0u,/0r and o = Eeg,
once equation (9) is solved for the displacement.
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TABLE 1: Young’s modulus and Poison ratio for E-glass and BISGMA/
TEGDMA epoxy

Property E-glass filler BISGMA/TEGDMA epoxy
Young’s modulus E (GPa) 75 1.7
Poison ratio v 0.24 0.35

5 Result and discussion

5.1 Material properties

The biocompatible composite, E-glass particle reinforced BISGMA /TEGDMA
epoxy, is used in the present study [1, 6]. The average diameter of the E-
glass particles is 2.6 pm. The Young’s moduli and Poison ratios of the E glass
particles and the BISGMA /TEGDMA polymers are listed in Table 1. According
to these properties, the average thickness of the interphase is 2.4% of the
radius of the filler [1, 6]. For an iso-displacement loading, a small strain of
€ =0.1% is used [6].

5.2 Results and discussions

Figures 2(a) and 2(b) show the variations of Young’s modulus and Poison
ratio over the interphase region for different ] values. The volume fraction
of the filler is assumed as 20%. When ] > 1, the Young’s modulus of the
interphase decreases moving away from the particle, while the Poison ratio
increases. When ] < 1, the Young’s modulus only increases slightly but
the Poison ratio increases rapidly. In both cases, the Young’s modulus and
Poison ratio are continuous and smoothly merge with the polymer matrix.

Figures 3(a) and 3(b) show the normalized radial displacement w,/u(ry,)
versus the normalized radial distance r/r,, from the centre of the filler to
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FIGURE 2: Variations of Young’s modulus (a) and Poison ratio (b) over the
interphase region. Interphase thickness 2.4%
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F1GURE 3: Normalised radial displacement against radial distance.
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the outer surface of the matrix for the volume fractions 20% and 40%, re-
spectively. Figure 3(a) shows that the displacement is independent of r in
the filler region, though an increase of the J value results in a slight decrease
of the displacement. In the interphase region, the displacement becomes a
function of r and it increases more significantly for the cases of ] < 1. The
displacement is continuous at both boundaries of the filler-interphase and
interphase-matrix regardless of the | value. However, the displacement at
the boundary of the filler and interphase is non-smooth, while smooth at the
interphase-matrix boundary. Only for the case of | = F¢/F,,, the displace-
ment is continuous and smooth at both boundaries of the filler-interphase
and interphase-matrix. Figures 3(a) and 3(b) also show that the volume
fraction of fillers of a composite has a great influence on the displacement
in the composite. The larger the volume fraction of fillers is, the greater
increase in the magnitude of displacement.

Figures 4(a) and 4(b) show the strain variations in the composite for volume
fractions of 20% and 40%. The strain is normalized to the strain at the
outer surface of the matrix €/e,,. The strain in the filler region is small for
all J. However, the strain distribution in the interphase region is strongly
influenced by the value of J. When J > 1, the strain decreases rapidly as
T increases, while the strain increases slowly with | < 1. The strain at the
filler-interphase boundary is discontinuous for all values of ] except the case of
] = F¢/Fun, for which the strain seems continuous and smooth. The graphs
also show the strain is least in the filler region. The results of the stress
distribution in a composite are presented in Figures 5(a) and 5(b). As shown
in Figure 5(a), the stresses in the filler region and matrix region are constants
of different values, higher magnitudes in the filler region. At the boundary of
filler and interphase, stresses are discontinuous for all the values of | except
the case of ] = F;/F,,. The magnitude of the stress decreases as r increases
towards the boundary of the interphase and matrix. Figure 5(b) presents the
stress distribution when the volume fraction is increased to 40%. Overall,
the stress behaves similar to the case in Figure 5(a) but the magnitudes of
the stress are decreased.
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6 Conclusion

The new mathematical model describing a property of the interphase be-
tween a spherical particle and polymer matrix provides a good solution for
predicting the mechanical properties of a composite.

The Young’s modulus and Poison ratio vary over the interphase region as the
state of discontinuity varies, measured by the | values. Overall, the Young’s
modulus of the composite decreases as the ] value increases, while Poison
ratio increases.

The FEM solution of the mathematical model provides a good prediction of
the variation of displacement, strain and stress along the radial axis over the
interphase region at different states of discontinuity.

The increase of the volume fraction of the filler results in decrease of the
strain and stress, and increase of the displacement in the composite.
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