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A topological approach to three dimensional
laminar mixing
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Abstract

In recent years, topological concepts have yielded valuable insights
into the long standing problem of laminar fluid mixing. Topologically
complex stirring protocols are typically far superior to topologically
simple protocols, guaranteeing chaotic advection of fluid particles and
the associated exponential dilation of material elements. Furthermore,
topological approaches to mixer design are typically intuitive and
insensitive to precise geometry or fluid properties. However, results
to date have been limited to two dimensional flows (for example,
batch stirrers in food or polymer manufacturing) and quasi three
dimensional protocols (for example, continuous flow micromixers).
Motivated by a simple stretching and folding argument that works well
in two dimensions, we propose a topological approach to fully three
dimensional fluid mixing. A transition matrix is derived to describe
the mapping induced by a three dimensional ‘braid’ on area elements,
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and the associated Perron–Frobenius eigenvalue provides a prediction
of the large time asymptotic area growth rate. We show that these
theoretical predictions agree well with numerical data obtained from
simulations in a prototype three dimensional mixing device.

Contents

1 Introduction C876
1.1 Non-inertial fluid mixing . . . . . . . . . . . . . . . . . . . C876
1.2 The 2D pigtail protocol . . . . . . . . . . . . . . . . . . . . C876
1.3 The 2D clockwise protocol . . . . . . . . . . . . . . . . . . C878
1.4 Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C880
1.5 Ghost rods . . . . . . . . . . . . . . . . . . . . . . . . . . . C883
1.6 The next frontier: from 2D to 3D . . . . . . . . . . . . . . C883

2 A theory of 3D mixing C884
2.1 Advection and topology . . . . . . . . . . . . . . . . . . . C884
2.2 A theory of 3D braids . . . . . . . . . . . . . . . . . . . . C886
2.3 Practical issues: from braids to protocols . . . . . . . . . . C891

3 Method C893
3.1 A hypothetical batch mixer . . . . . . . . . . . . . . . . . C893
3.2 Surface tracking algorithm . . . . . . . . . . . . . . . . . . C899

4 Results C900
4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . C901

References C908



1 Introduction C876

1 Introduction

1.1 Non-inertial fluid mixing

Mixing represents an important yet relatively little studied topic in fluid
mechanics. At the most fundamental level, mixing results from the (generally
slow) process of molecular diffusion. In most practical applications of fluid
mixing, homogenisation is greatly accelerated by inducing turbulence or
unsteady advection, resulting in rapid dilation of fluid elements and chaotic
Lagrangian particle trajectories. In many instances fluid mixing must be
promoted in the considerably more challenging laminar regime, either because
turbulence is precluded by low Reynolds number (for example, dough, molten
glass, microfluidic devices [9, 11, 15, e.g.]) or because high shear rates are
undesirable (for example, dissolved protein characterised by a fragile three
dimensional molecular structure [13]).

Boyland et al. [2] considered the stirring of viscous fluid within an open
cylindrical vat by means of cylindrical rods embedded within the fluid. An
abundance of theoretical, numerical and experimental evidence has now been
adduced to the effect that the efficiency of a stirring protocol is principally a
function of the topology of the stirrer motion rather than its energy cost.

1.2 The 2D pigtail protocol

Figure 1 illustrates one of the simplest mixing protocols, the pigtail protocol for
three stirring rods. Each period of this protocol entails two stirrer interchanges.
First, the two left-hand rods are interchanged along a clockwise trajectory
(denoted σ1); second, the two right-hand rods are interchanged along an
anticlockwise trajectory (denoted σ−1

2 ). Figure 2 shows another three stirrer
protocol, the clockwise protocol σ1σ2 corresponding to clockwise interchange
of the two left-hand rods followed by clockwise interchange of the two right-
hand rods. Figure 3 presents a stylised rendition of two periods of the pigtail
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Figure 1: The three stirrer pigtail protocol in a cylindrical vat of fluid. The
stirring rods {R1,R2,R3} are indicated by circles. Each period of the protocol
comprises two phases: first, the two left-hand rods R1 and R2 are interchanged
along a clockwise trajectory (left to middle figures); second, the new right-
hand rods R1 and R3 are interchanged along an anticlockwise trajectory
(middle to right). The entropy of this protocol is determined by the action
of the flow on filaments connecting (R1,R2) and (R2,R3). In particular, the
right-hand configuration (a, b) is related to the left-hand configuration (a0, b0)
by the congruence (1) and transition matrix (5), which in turn yield the
entropy (6).

protocol (left) and clockwise protocol (right).

Figures 1 and 3 suggest that the pigtail protocol is highly efficient, inducing
Fibonacci style layering of filaments. Topologically it is of the form

a ∼= a0 + b0 , b ∼= a0 + 2b0 (up to isotopy), (1)

being a composition of the σ1 mapping(
a
b

)
∼= T(σ1)

(
a0
b0

)
, T(σ1) =

(
1 0

1 1

)
, (2)

and σ−12 mapping:(
a
b

)
∼= T(σ−1

2 )

(
a0
b0

)
, T(σ−1

2 ) =

(
1 1

0 1

)
. (3)
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This protocol induces exponential stretching of nontrivial material loops
around pairs of stirrers as a function of time. Furthermore, the efficiency is
topological in the sense that it is insensitive to the precise exchange paths of
the stirrers (for example, circular versus elliptic or square), stirrer positions
(for example, whether collinear and equispaced) or stirrer shape. To be precise,
it can be shown that there exists a lower bound λ > 1 , called the dilatation,
by which certain fluid filaments are stretched from period to period in the
large time limit. It is no coincidence that the dilatation coincides with the
largest eigenvalue

λ = 1
2
(3+

√
5) ≈ 2.618 (4)

of the transition matrix T defined by (1):

T(σ1σ
−1
2 ) =

(
1 1

1 2

)
. (5)

The logarithm of the entropy is referred to as the entropy of the stirring
protocol:

h = log λ = 0.962 . (6)

The transition matrices are right multiplicative, satisfying

T(σ1σ
−1
2 ) = T(σ1)T(σ−1

2 ). (7)

They act on the nonnegative row-vector

n = (na , nb) (8)

where na and nb count the number of a0-type and b0-type filaments respec-
tively:

n(i+1) = n(i)T(i). (9)

1.3 The 2D clockwise protocol

We now consider the clockwise protocol. It has the same energy cost as the
pigtail protocol (at least in the zero inertia limit), differing only in orientation.
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Figure 2 suggests a mapping of the form(
a
b

)
∼= T(σ1σ2)

(
a0
b0

)
, T(σ1σ2) =

(
1 1

1 0

)
, (10)

which in turn suggests an entropy precisely half that of the pigtail protocol:

λ = 1
2
(1+

√
5) ≈ 1.618, h ≈ 0.481 (incorrect).

However, this entropy is incorrect: the clockwise protocol is not guaranteed to
produce any exponential stretching—equivalently, to possess positive entropy—
based only on the relative motion of the stirrers. Since the nonnegative
transition matrices fail to distinguish between clockwise and anticlockwise
motion, that is,

T(σ−1
1 ) = T(σ1) and T(σ2) = T(σ−1

2 ),

they are not always valid under multiplication:

T(σ1σ
−1
2 ) = T(σ1)T(σ−12 ) but T(σ1σ2) 6= T(σ1)T(σ2).

In particular, they fail to capture the ‘snap-back’ phenomenon of the b-
filament during the σ2 operation (Figure 2, middle to right), and of both
filaments during the third half-period (Figure 3, left). Higher order transition
matrices confirm that the clockwise protocol induces circulatory motion, and
return a trivial lower bound of e = 0 on the entropy:

T(σ1σ2σ1) =

(
0 1

1 0

)
, T((σ1σ2)

3) = I . (11)

Fortunately, rigorous algorithms are available for entropy determination.
However, before outlining these I clarify the relationship between maps,
braids and stirring protocols.
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Figure 2: The three stirrer clockwise protocol in a cylindrical vat of fluid. The
stirring rods {R1,R2,R3} are indicated by circles. Each period of the protocol
comprises two phases: first, the two left-hand rods R1 and R2 are interchanged
along a clockwise trajectory; second, the new right-hand rods R2 and R3 are
interchanged clockwise.

1.4 Braids

It is helpful to visualise an n-stirrer protocol as an n-strand braid—see, for
example, Figure 6 by Boyland et al. [2] and Figures 1 and 2 by Thiffeault &
Finn [12]. Such a braid is of the form { (xj,yj, t) }

n
j=1 , and corresponds to the

parameterised stirrer trajectories {(xi(t),yi(t))} plotted against a vertical time
axis. Informally, the braid representation explains why the pigtail protocol
is topologically complex (‘tangled’) whereas the clockwise protocol is trivial
(‘not tangled’). In braiding theory, parametrisation is not important: in a
side view of the strands, only the pairwise crossings are deemed significant.
Thus, an arbitrary braid can be fully represented by an ordered sequence (for
example, σ1σ

−1
2 ) of strand interchanges as viewed from above. Braids may be

further simplified via the equivalence (‘presentation’) rules

σjσj+1σj ≡ σj+1σjσj+1 for 1 6 j < n− 1

and
σiσj ≡ σjσi for |i− j| > 1.
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Figure 3: Left: Two periods of the pigtail protocol (Figure 1). Right: Stylised
representation of two periods of the clockwise protocol shown in Figure 2.

The braid representation is also useful for rigorous analysis. According to
Thurston–Nielsen theory [2, 12], there is a one-to-one correspondence between
non-equivalent braids and isotopically distinct two dimensional maps. An
example of such a map is the inertialess flow field generated by one period of
a stirring protocol. Strictly speaking, entropy is a property only of maps (the
formal definition being beyond the scope of this article); however, Thurston–
Nielsen theory justifies the extension of entropy to braids. Thus, the search
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for stirring protocols can be represented conceptually in the form

hflow > hbraid ≡ hcanonical map . (12)

In general, it is a highly nontrivial task to predict a lower bound on the
entropy of a flow based solely on the topology of the stirrer motion. However,
given a braid representation of the flow one can appeal to braid theory to
derive a lower bound (12) on the flow entropy. For general braids, nonnegative
transition matrices are clearly inadequate for analysis. Some progress has
been made via abstract matrix representations of braids. However, more
general algorithms involve a partial return to physical reasoning. The train
track algorithm of Bestvina & Handel [1] is complex, but also appealing
inasmuch as it generates an invariant (‘train track’) representation of the
‘shape’ of the flow. The filament based algorithm of Moussafir [8], valid for an
n-strand braid in a nonperiodic domain, is based on a lamination comprising
(one or more) closed loops, such that each loop is wrapped tightly around
some (but not all) of the n stirrers. The status of this lamination after any
given braid sequence (periodic or otherwise) is unambiguously represented
by an integer valued array of approximate length 2n describing both the
thickness and orientation of the filament segments. Moussafir’s evolution
equations1 are thus robust to ‘snap-back’ or ‘unwinding’ phenomena. These
(slightly tedious) equations are not matrix based, and thus do not yield direct
entropy estimates; on the other hand, they are easy to program and converge
rapidly to the true braid entropy. The Moussafir algorithm was subsequently
extended by Finn & Thiffeault [4] to the case of n stirrers in a doubly periodic
domain (equivalently, on the surface of a torus).

1Moussafir’s terminology [8] is unconventional in several respects: (1) His sign func-
tion a− is nonpositive. (2) A clockwise interchange is denoted by σ−1

j , and an anticlockwise
one by σj. (3) Since the first and last stirrers are stationary, a nontrivial braid requires
n > 5 stirrers.
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1.5 Ghost rods

The robust and efficient stirring of Boyland et al. [2] requires at least three
moving rods, since it can be shown that any periodic motion of one or
two stirrers in a bounded domain is topologically trivial. However, it was
quickly realised that nontrivial flow topology may be induced with fewer than
three stirrers. A good example is the figure-of-eight single-stirrer protocol
of Gouillart et al. [6], although this may be sensitive to changes in flow
parameters. This nontrivial flow is because any periodic point in the flow
effectively constitutes a ‘virtual stirrer’ or ‘ghost rod’, and thus may be
included in any topological analysis of the stirring protocol. For example,
a mixing protocol for two dimensional lid driven cavity flow may possess
positive entropy even without corresponding to any obvious braid sequence.
Moreover, Stremler & Chen [10] suggested that a modified two dimensional
cavity flow, featuring vortical motion with three or more well-defined ghost
rods, could be used to obtain effective mixing. Chen & Stremler [3] further
suggested that this vortical lid driven flow could provide efficient lateral
mixing for a pressure driven, continuous flow mixer. Though hypothetical at
this stage, this continuous flow mixer shows promising potential and bears a
strong qualitative resemblance to the realistic micromixer of Kang et al. [7].

1.6 The next frontier: from 2D to 3D

All of the above stirring protocols are essentially two dimensional in nature,
since the underlying topological theory (Thurston–Nielsen theory) applies
to two dimensional maps. However, guided by these studies we tentatively
propose one possible approach to achieving efficient mixing in three dimensions.
Section 2 begins by proposing an analogue of braiding in three dimensions.
Section 3.1, following the methodology of Stremler and Chen [10, 3], proposes
a hypothetical batch mixer capable of executing these three dimensional
‘braiding’ protocols. The efficiency of each protocol is assessed using surface
tracking (Section 3.2) and compared with theoretical predictions (Section 4).



2 A theory of 3D mixing C884

2 A theory of 3D mixing

2.1 Advection and topology

The entropy of a two dimensional flow is defined as the asymptotic minimum
growth rate of the length of an arbitrary one dimensional filament advected by
the flow. Such a filament may, for example, represent the interface between two
chemical species to be mixed. We would like to stretch and fold this filament
as rapidly and uniformly as possible to create thin alternating striations of
the chemical, thereby accelerating homogenisation by molecular diffusion.

Analogously, in a three dimensional flow we could consider an area of an
interfacial surface separating two chemical species. In this situation our aim
is to maximise the rate at which this interfacial area is stretched and folded.
Accordingly, we use the (asymptotic exponential) area growth rate as a proxy
for the entropy of the given flow.

In a two dimensional flow, isolated point stirrers and other periodic points of
the flow typically constitute topological obstacles to filament advection. If
such periodic points execute a nontrivial braiding motion, then they induce a
topologically complex deformation of nearby fluid filaments that cannot be
smoothly undone without simultaneously moving the stirrers—even with the
aid of an arbitrarily complex, possibly unsteady, pressure field. By contrast,
isolated periodic points in a three dimensional flow are physical obstacles to
surfaces (by determinism) but are not topological obstacles, since their relative
motion is insufficient to yield a lower bound on the stretching of surfaces.
Consequently, it is necessary to consider other periodic structures, such as
periodic curves (for example, manifolds associated with periodic orbits) which
may be used to guarantee stretching of surfaces.

The question now arises of how to induce periodic lines within a three
dimensional flow. As a first step toward this goal, we extend two dimensional
braiding concepts to three dimensional domains by executing the individual
two dimensional braid generators in two orthogonal planes of motion. This
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Table 1: The braided stirring protocols studied in this work.
Name Label Braid sequence Period

2D pigtail pig2D σ1σ
−1
2 T = 2

3D pigtail (phased) pig3D σ1σ
−1
2 Σ1Σ

−1
2 T = 4

3D pigtail (interleaved) pigIL σ1Σ1σ
−1
2 Σ

−1
2 T = 4

2D clockwise clock2D σ1σ2 T = 2
3D clockwise (phased) clock3D σ1σ2Σ1Σ2 T = 4
3D clockwise (interleaved) clockIL σ1Σ1σ2Σ2 T = 4

concept is illustrated in Figure 4 for a cubic domain with m = 3 ‘line stirrers’
{R1,R2,R3} in the (x,y) plane, together with n = 3 line stirrers {S1, S2, S3}
in the (z,y) plane. The σj (j = 1, 2) operations correspond to clockwise
interchange of the jth and (j + 1)th stirrers in the (x,y) plane (viewed in
the direction of decreasing z). We also define Σk operations as the clockwise
interchange in the (z,y) plane of the kth and (k + 1)th stirrers (viewed in
the direction of increasing x). For example, the Σ1 generator corresponds in
Figure 4 to the clockwise interchange of S1 and S2, while the Σ−1

2 generator
corresponds to anticlockwise interchange of S2 and S3. By analogy with
Thiffeault & Finn [12], these six line stirrers are considered to form a grid
of ‘ghost rods’, on the understanding that rods {R1,R2,R3} are distorted by
motion of {S1, S2, S3} and vice versa.

We now define a three dimensional braid to be a finite, repeatable sequence
of the generators

{σ±1j ,Σ±1k : 1 6 j < m , 1 6 k < n } (13)

and a three dimensional mixing protocol as an implementation of (13) by
means of (real or virtual) rods within a body of fluid. The six 3D protocols
considered in this article are listed in Table 1. They comprise three variants
of each of these two protocols:

1. quasi-2D, comprising only σ operations;
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Figure 4: The four surface elements {a, b, c, d} defined by a configuration of
m = 3 ghost rods {R1,R2,R3} restricted to move in the (x,y) plane and n = 3
rods {S1, S2, S3} moving in the (z,y) plane. The general case of m+n stirrers
yields a total of (m− 1)× (n− 1) area elements.

2. phased or weakly three dimensional, comprising alternating sequences
of σ and Σ operations; and

3. interleaved or strongly three dimensional, comprising alternating se-
quences of single σ and Σ operations.

2.2 A theory of 3D braids

Our principal goal is to estimate the dilatation λ and entropy h of each
protocol listed in Table 1. The formal definition of entropy of a 3D map
is highly nontrivial and well beyond the scope of this article. Instead, in
an abuse of notation, we define the ‘entropy’ informally as the exponential
growth rate in surface area of a ‘typical’ surface element advected by the
corresponding three dimensional flow.

The m+ n = 6 ghost rods shown in Figure 4 define a set of (m− 1)(n− 1)
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Figure 5: Left: Schematic representation of the surface elements {a, b, c, d}
from Figure 4 for 3 × 3 braids. Middle: Schematic representation of the
Σ1 generator. Right: Schematic representation of the σ2 generator.

area elements, here labelled {a, b, c, d}. Figure 5 illustrates schematically the
response of these initial elements (left) to the Σ1 generator (middle) and
σ2 generator (right). The Σ1 transformation is of isotopic form

a
b
c
d

 ∼=


1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1



a0
b0
c0
d0

 . (14)

The 4× 4 matrix in (14) is of Kronecker product form

S = TΣ ⊗Tσ (15)

with Tσ as the m-stirrer identity matrix and TΣ as the n-stirrer transition
matrix for the σ1 operation:

TΣ = T(σ1) =

(
1 0

1 1

)
, Tσ = T(idm) =

(
1 0

0 1

)
. (16)

The σ2 transformation takes the same form as (14)–(15) with

TΣ = T(idn) =

(
1 0

0 1

)
, Tσ = T(σ2) =

(
1 1

0 1

)
. (17)

The transition matrix S is right multiplicative, that is,

n(i+1) = n(i)S(i), (18)
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on the filament thickness row-vector

n = (na , nb ,nc , nd) . (19)

We conjecture that some ‘simple’ 3D braids are of the separable form (15),
with dilatation λ corresponding to the dominant eigenvalue of the transition
matrix S. (The uniqueness of dilatation λ is guaranteed by positivity and the
Perron–Frobenius Theorem.) Kronecker product properties then imply that
the full-period entropy is simply the sum of the entropies in each plane:

h = hσ + hΣ (conjectured separable 3D braids). (20)

The pig3D protocol appears to be of this type, implying an entropy of

h = 2× 0.9624 = 1.925 . (21)

This in turn implies that the pig2D and pig3D protocols are equally efficient
in energy terms, as measured by entropy per generator.

We now consider the clock3D protocol. One might expect it to be topologically
trivial, like its 2D counterpart:

hσ = hΣ = 0 ⇒ h = 0 .

However, recall that the clock2D protocol exhibits cancellation or ‘snap-
back’ both within and between mixing periods. We conjecture that its 3D
counterpart exhibits only within-period cancellation, owing to alternation of
the braiding plane. More precisely, we conjecture with reference to Figure 6
that the clock3D protocol is separable and nontrivial, of the form (14)–(15)
with

TΣ = Tσ = T(σ1σ2) =

(
1 1

1 0

)
, S =


1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

 . (22)
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The separability conjecture then yields

h = 2× log[ 1
2
(1+

√
5)] = log[ 1

2
(3+

√
5)] = 0.962 , (23)

indicating that the clock3D protocol has the same entropy as the pig2D
protocol and thus is half as efficient, in energy terms, as either the pig2D
or the pig3D protocol. In addition, an upper bound on the braid entropy is
suggested by the max-norm of the transition matrices in (22), corresponding
to the maximum layer thickness in Figure 6:

λσ = λΣ 6 2 , λ 6 4 , h 6 log 4 = 1.386 . (24)

Finally, it appears intuitively reasonable to expect the interleaved braids pigIL
and clockIL to possess the same entropies as their phased counterparts pig3D
and clock3D respectively. We test this idea by appealing once more to a
folding argument. In particular, we conjecture that the phased braids can be
represented as the product of two S-matrices, each of which is square with
dimension (m− 1)(n− 1):

S(σ1σ
±1
2 Σ1Σ

±1
2 ) = S(σ1Σ

±1
2 )S(Σ1σ

±1
2 ). (25)

Conversely, the (period-4) interleaved braids each require four S-matrices:

S(σ1σ
±1
2 Σ1Σ

±1
2 ) = S(σ1)S(Σ1)S(σ±12 )S(Σ±12 ). (26)

It then follows from elementary properties of Kronecker products that

S(σ1σ
±1
2 Σ1Σ

±1
2 ) = T(Σ1Σ

±1
2 )⊗T(σ1σ

±1
2 ) (27)

for the phased braids, and

S(σ1Σ1σ
±1
2 Σ

±1
2 ) = T(Σ1)T(Σ±12 )⊗T(σ1)T(σ±12 ), (28)

for the interleaved braids, where each TΣ matrix is of size (n−1) and each Tσ

matrix is of size (m− 1).
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Figure 6: Conjectured behaviour of the 3D phased clockwise braid (clock3D,
periodic sequence σ1σ2Σ1Σ2). The final configuration comprises four area
elements of type a0, two of b0, two of c0 and one of d0 (lower-left and lower-
right figures, with filament thicknesses as indicated). This is consistent with
the Kronecker matrix representation (15), (18), (19) and (22).
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Equations (15) and (27) are equivalent, yielding the same entropy esti-
mates (21) and (23) for the pig3D and clock3D protocol respectively. Similarly,
(15) and (28) are equivalent for the pigIL protocol, indicating equal entropies
for the pig3D and pigIL protocols. On the other hand, (15) and (28) are not
equivalent for the clockIL protocol. More precisely, (28) predicts that the
clockIL protocol has the same entropy as the pig3D and pigIL protocols and
twice the entropy of the clock3D protocol. This implies that the four protocols
pig2D, pig3D, pigIL and clockIL are equally efficient in energy terms.

2.3 Practical issues: from braids to protocols

In Section 2 we outlined a theory of 3D braiding for a planar array of m+ n
stirrers. We proceeded to propose 3D mixing protocols and corresponding
entropy estimates for the case m = n = 3 . We must now propose plausible
flows and practical stirring mechanisms for implementation of these protocols.

These practical difficulties are admittedly formidable. For example, are the
stirrers {R1,R2,R3} and {S1, S2, S3} in Figure 4 to be interpreted as physical
rods—or are they strictly virtual, denoting ‘ghost rods’ identifiable within a
3D flow field?

One could naively imagine a physical implementation of Figure 4 using rigid
but retractable rods capable of insertion into, and withdrawal from, the fluid
as required. For example, the phased protocols (pig3D or clock3D) could be
implemented using three rods, which would presumably be inserted twice
and removed twice during each period of mixing. The process of insertion
and withdrawal would itself modify the flow field, especially in the Stokes
flow limit of high viscosity and negligible inertia. However, more troublesome
is the practical problem of mounting the stirrers so that they are free to
move both vertically and horizontally. For example, could they be arranged
to slide along rigid lateral walls of the mixing chamber? Even if this were
possible, the resulting flow field would be theoretically singular—not an
uncommon phenomenon in real world modelling, but potentially hazardous
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from a numerical perspective.

We regard the stirrers as virtual, and Figure 4 as idealising either an improved
continuous flow micromixer or a lid driven batch mixer. In either case, the
objective is to induce alternating asymmetric vortical flows qualitatively simi-
lar to the 3D braids specified in Table 1. In the batch mixer case, the driving
mechanism comprises one or more sliding cavity walls or lids—possibly sec-
tioned lids, as proposed by Stremler & Chen [10]—inducing a viscous flow field
subject to no-slip conditions on all boundaries. In the continuous flow case, at
least two plausible mechanisms are available: physical and electrostatic. The
physical mechanism, acting through a no-slip boundary condition, comprises
microscale corrugations or other 3D micro-channel structures, such as those
studied by Kang [7]. Alternatively, electrostatic forces are used either to drive
a continuous flow micromixer or to induce lateral motion within such a flow
(Whitesides & Stroock [15]). Electrostatic forcing acts through nanoscale
boundary layers; the resulting flow is effectively macroscopic, corresponding
to free slip vortical motion along a rigid boundary.

Whatever the chosen mechanism—lid motion, static corrugations and electro-
static fields—the (x,y) or (z,y) advection of Figure 4 would most likely be
applied to the top and/or bottom faces of the cavity, rather than on the indi-
cated side walls. However, the interchange of ghost rods is only approximate
at best: in the language of microfluidics, the local turning angle (Whitesides
& Stroock [15]) is a function of position, rather than a uniform 180 degrees
as indicated in Figure 4. Similarly, the manifold of periodic points of the flow
is curved rather than rod-like.
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3 Method

3.1 A hypothetical batch mixer

Our ultimate aim is to apply 3D braid theory to the design of practical mixers
(either batch based or continuous flow). As a precursor to this computationally
challenging task, we now propose a hypothetical batch mixer corresponding
as closely as possible to the idealised braiding mixer of Figure 4. In this
hypothetical inertialess flow, free-slip boundary conditions apply on the cavity
walls in contact with the ghost rods; these correspond to z = ±1 in the case
of σ operations and to x = ±1 for Σ operations. Rigid no-slip boundary
conditions are enforced on all other cavity walls, including the top and bottom
faces of the cavity (y = ±1).

We must now define eight hypothetical flows, corresponding to the eight
braid generators in (13) and Table 1. Fortunately, all eight can be readily
defined with respect to a single ‘basic’ flow field with an analytic, closed form
representation.

The basic flow in our hypothetical batch mixer is plotted in the (x,y) plane
in Figure 7 (left). This flow implements the σ1 operation within the double
unit cubic domain D = [−1, 1]3; it is expressible by a single streamfunction ψ
of the form

(u, v,w) = (ψy, −ψx, 0) (29a)

ψ(x,y, z; σ1) = β(x− α)(1− x
2)2(1− y2)2, (29b)

where the geometric parameter 0 < α < 1 and scale factor β > 0 are to
be defined shortly. The three starred points in Figure 7 (left) indicate the
respective rest positions {(xj , yj) = (aj, 0)} of the ghost rods or line stirrers
{R1,R2,R3} in Figure 4. In particular, we identify R3 with the right-hand
stagnation point within the clockwise rotating minor eddy occupying the
right-hand sub-domain α < x < 1 . The other two ghost rods {R1,R2} are
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Figure 7: Planar streamlines of the hypothetical three dimensional laminar
flow defined in Section 3.1 for implementation of the stirring protocols of
Table 1. Left: Streamlines for the σ1 braid generator in the (x,y) plane,
corresponding to the interchange of R1 and R2 in Figure 4; the corresponding
flow field is specified by (29). The three starred points denote the rest
positions {(aj, 0)} of the ghost rods {R1,R2,R3} in Figure 4. In the special case
α = 0.3751 these rods are symmetrical, with (a1, a2, a3) = (−a, 0,a) for
a = 0.6217 . Right: Streamlines for the σ−1

2 streamfunction (31), obtained by
reflection of the σ1 streamfunction in the y-axis. Starred points correspond
to ghost rods {R ′1,R

′
2,R

′
3}; for α = 0.3751 they coincide with the ghost rods

{R1,R2,R3} at left. The Σ−1
2 generator, corresponding to the interchange of

S2 and S3 in Figure 4, is implemented by mapping the above σ−12 flow to the
(z,y) plane.
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identified with a streamline of the anticlockwise major eddy occupying the
left-hand sub-domain −1 < x < α .

The other braiding operators are derived from the σ1 operation as follows.
Reversal of the σ1 flow yields the inverse σ−1

1 operation:

ψ(x,y, z; σ±11 ) = ±β(x− α)(1− x2)2(1− y2)2. (30)

The σ2 and σ−1
2 operations are obtained by y-wise reflection of the σ−11 and σ1

operations respectively:

ψ(x,y, z; σ±12 ) = ∓β(x+ α)(1− x2)2(1− y2)2. (31)

The σ−1
2 streamfunction is plotted in Figure 7 (right). The three starred

points in this figure correspond to ghost rods {R ′1,R
′
2,R

′
3} with respective rest

positions {(x ′j ,y
′
j) = (a ′j , 0)}. We wish to ensure that these ghost rods coincide

with those of the σ1 operation, that is, R ′j = Rj and a ′j = aj for j = 1, 2, 3 .
This property will hold automatically if the σ1 ghost rods are symmetric, that
is, (a1, a2, a3) = (−a, 0,a) for some constant α < a < 1 . We satisfy this
additional condition by numerically solving for α inversely as a function of a
in the form

ψ(−a(α), 0; σ1) = ψ(0, 0;σ1) where a(α) = argmaxxψ(x, 0;σ1), (32)

to yield
α = 0.3751 , a = 0.6217 . (33)

Next, the scaling is set to
β = 1.3148 (34)

so that the duration of each σj operation is precisely one time unit. Finally,
the transverse Σk operations follow directly from their σk counterparts via
the coordinate interchange (x,u) → (z,w). Thus, the overall flow field is
piecewise steady; more precisely, it is steady within each generator and varies
between generators only in sign and spatial orientation.
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clock3D pig3D pigIL

t = 0

t = 1

t = 2

Figure 8: Advection of a reference surface S0 (t = 0) by the first half-period
(t = 0, 1, 2) of the clock3D (left), pig3D (middle) and pigIL (right) protocols.
Arrowheads indicate the direction of ghost rod interchange within each phase.
The initial surface S0 is a centred horizontal square of half-width s = 0.6217 ,
corresponding to the filament {a, b, c, d} of Figure 4.
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clock3D pig3D pigIL

t = 2

t = 3

t = 4

Figure 9: Advection of S0 by the second half-period (t = 2, 3, 4) of the
clock3D, pig3D and pigIL protocols.
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t = 4

pig2D pig3D pigIL

clock2D clock3D clockIL

Figure 10: Advected surface S(t) for t = 4 under each of the six protocols as
indicated.
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3.2 Surface tracking algorithm

We use the batch mixer of Section 3.1 to study the braided stirring protocols
with m = 3 line stirrers in the (x,y) plane and n = 3 line stirrers in the
transverse (z,y) plane, as specified in Table 1. Each protocol thus defines
a periodic sequence of piecewise steady flows. The efficacy of each stirring
protocol is assessed as follows. We choose a reference surface S(0) ≡ S0 within
the interior of the domain. The chosen protocol then transforms S(0) into
a time varying surface S ≡ S(t), as shown in Figures 8 to 10. The relative
area A(t)/A0 of S(t) typically exhibits exponential growth as a function of
time t, thereby furnishing an estimate of the corresponding braid entropy.
Each surface S(t) is represented as an unstructured triangular mesh M(t) of
passively advected particles. Particle trajectories are computed using standard
fourth order Runge–Kutta integration. Localised refinement of the stretched
mesh is performed using triangle bisection (with optional local re-meshing)
as outlined by Galaktionov et al. [5] and Unverdi & Tryggvason [14]. For
a chaotic flow, this refinement protocol ensures exponential growth in the
number N(t) of component particles in M(t).

Ideally, the empirical entropy rate for any given stirring protocol should be
independent of meshing parameters and choice of initial surface S0. However,
in practice finite horizon effects are significant, and the exponential area
growth of S(t) necessitates some trade-off between spatial and temporal
resolution. For each simulation, our computing resources impose a practical
limit of O(108) for representation of S(t). Qualitative results were derived
using relatively coarse meshes, with S0 varying in size, position and shape
(cube, sphere, rectangle). Quantitative results were computed using a fine
mesh and spherical initial surface S0 = B of radius 0.2, suggestive of a bubble
of dye embedded in a fluid filled cavity (Figures 11 and 12). For an initial
surface of this size, a mesh M(t) is considered fine if, for all t, the maximum
separation distance between adjacent particles is 0.04, that is, 2% of the
cavity width.
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Table 2: Qualitative ranking (best to worst) of the stirring protocols, based
on Figures 8 to 12.

=1 pig3D σ1σ
−1
2 Σ1Σ

−1
2

=1 pigIL σ1Σ1σ
−1
2 Σ

−1
2

2 clockIL σ1Σ1σ2Σ2
3 clock3D σ1σ2Σ1Σ2
4 pig2D σ1σ

−1
2

5 clock2D σ1σ2

Table 3: Tentative quantitative ranking of the stirring protocols (see Fig-
ure 13), using empirical entropy rate h̃/T as a proxy for energy efficiency.

1 pig2D σ1σ
−1
2

2 pig3D σ1σ
−1
2 Σ1Σ

−1
2

3 pigIL σ1Σ1σ
−1
2 Σ

−1
2

4 clockIL σ1Σ1σ2Σ2
5 clock3D σ1σ2Σ1Σ2
6 clock2D σ1σ2

4 Results

Qualitative results for the six mixing protocols are presented in Figures 8 to 12
and summarised in Table 2. The pig3D and pigIL protocols are approximately
equivalent except over short time horizons. Both are clearly superior to the
clockwise protocols. The clock3D protocol is moderately inferior to the clockIL
protocol, but far superior to the clock2D protocol.

Quantitative results are summarised in Figure 13 and Table 3. For each
protocol, Figure 13 plots the relative area A(t)/A0 of S(t) on a semilog scale
against the number t/T of elapsed stirring periods. The empirical entropy of
each protocol is determined by fitting a straight line to (the upper portion
of) the corresponding area curve.
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All protocols except clock2D clearly have nonzero entropies. In terms of full
period entropy h = log λ , the best protocol is pig3D, followed respectively by
pigIL and clockIL. However, the ranking of Table 3 is based on entropy per
generator or entropy rate h/T , a more meaningful measure from the viewpoint
of energy efficiency. On this basis the favourite is the pig2D protocol, which
surpasses the theoretical entropy rate of 0.481. This benchmark rate is also
achieved by the pig3D and pigIL protocols, albeit only after three to four
periods. Contrary to (tentative) theoretical predictions, the clock3D and
clockIL protocols appear asymptotically equivalent and uniformly inferior
to their pigtail counterparts. However, the erratic character of the clock3D
growth curve indicates persistence of the ‘snap-back’ phenomenon and sug-
gests qualitative inferiority to the clockIL protocol. Intriguingly, the (joint)
asymptotic efficiency of the clock3D and clockIL protocols appears to match
the clock3D theoretical upper bound of h = log 4 ≈ 1.39 .

4.1 Discussion

Our theoretical and numerical results are in good qualitative agreement and
partial quantitative agreement. At a minimum, our results suggest that three
dimensionality strongly enhances the efficiency of topologically trivial two
dimensional protocols—a conjecture with promising implications for lid driven
cavity flows. Conversely, three dimensionality appears to slightly degrade the
quantitative performance of topologically complex protocols.

From a practical perspective, it is highly inadvisable to rely on a single
metric of mixing efficiency. The pig2D protocol provides an extreme example:
notwithstanding its outstanding entropy rate, it induces no lateral mixing
at all. In any event, the artificial nature of our hypothetical batch mixer
must be borne in mind. For example, its peculiar combination of slip and
no-slip boundaries arguably penalises three dimensionality and privileges the
two dimensional protocols (via invariant no-slip conditions on the end walls
located at z = ±1).
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Given the necessarily tentative nature of our conclusions, we are undertaking
enhancements in several directions. At the theoretical level, we are seeking
more robust entropy estimates, analogous to the Moussafir [8] formulae
for 2D braids. Qualitatively, we are applying alternative metrics such as
lateral mixing, shape (of particle trajectories and advected area filaments)
and degree of homogenisation (estimated via advection of particle clusters).
Quantitatively, we are improving the meshing algorithm and expanding the
regimen of convergence testing. Ideally, each quantitative simulation should be
run as long as possible in order to eliminate transient effects. However, mesh
quality inevitably degrades over time, and no amount of mesh refinement will
maintain a uniformly smooth representation of a large surface S(t) comprising
hundreds or even thousands of folds.

Last but not least, we are applying 3D braiding theory to more realistic mixing
devices. Figures 14 and 15 present simulations for one such prototypical device,
comprising a rectangular cavity fitted with an asymmetric roller lid at the top
face of the cavity. The fluid is again assumed to be inertialess; however, unlike
the hypothetical mixer of Section 3.1, it is modelled with no-slip boundary
conditions on all six cavity walls. (Vertical symmetry is now absent, but
could be restored by introducing a second moving lid on the bottom face
of the cavity.) The lid comprises two sections of unequal size, moving in
opposite directions to induce vortical motion of the interior fluid. Motion
in the x-direction simulates a σ operation; conversely, z-wise motion creates
a Σ operation. In this way, any protocol in Table 1 can be simulated. Our
aim is to demonstrate that these lid driven mixing protocols are significantly
more effective than conventional lid driven protocols of comparable energy
cost, thereby reinforcing the importance of both topology and dimensionality
to non-inertial fluid mixing.

Acknowledgements This work was supported by the ARC Discovery
Grant DP0881054.
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clock3D pig3D pigIL

t = 0

t = 4

t = 8

Figure 11: Advection of a bubble-like initial surface S0 = B by two periods
(t = 0, 4, 8) of the clock3D, pig3D and pigIL protocols. The ‘bubble’ B is an
off-centre sphere of radius r = 0.2 , corresponding to one-fifth of the cavity
half-width.
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t = 12

pig2D pig3D pigIL

clock2D clock3D clockIL

Figure 12: Advection of the bubble-like initial surface S0 = B under 12 units
of each of the six protocols as indicated.
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Figure 13: Semilog plots of relative area A(t)/A0 (with initial surface S0 = B)
for each protocol, plotted against the number t/T of elapsed stirring periods.
The marker spacing is ∆t = 1 throughout, corresponding to one full phase
of each protocol. The dashed line at left indicates the asymptotic growth
rate A(t) = O

(
(2.618)2t/T

)
of the pigtail protocols; the dashed line at right

indicates the optimistic estimate O
(
2(2t/T)

)
for the clock3D protocol. The

pig3D data is reproduced at right for comparison purposes.
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pig2D pig3D pigIL

t = 0

t = 1

t = 2

Figure 14: Implementation of the pigtail protocols (shown for t = 0, 1, 2) by
an alternating lid driven cavity flow. The cavity is rectangular, with rigid
side and bottom walls. The top wall comprises two asymmetric roller lids,
whose motion (indicated by red arrows) induces vortical flow within the cavity
interior.
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Figure 15: Cavity flow implementation of the pigtail protocols (t = 2, 3, 4).
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