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A far-field based T-matrix method for two
dimensional obstacle scattering
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Abstract

The infinite T-matrix completely describes the acoustic scattering
properties of an obstacle. The T-matrix is extremely important for
many applications because it is computationally cheap to use the T-
matrix to simulate scattering for many different orientations of the ob-
stacle or incident waves. The T-matrix is usually computed using the
null field method. However, the null field method is often numerically
unstable for acoustically large obstacles or for obstacles with large
aspect ratios. We describe an efficient and stable method for comput-
ing the T-matrix for sound-soft, sound-hard, absorbing, and dielectric
scattering, using numerical far field values obtained using any method.
We demonstrate the algorithm by generalizing the recently proposed
fundamental solution and non-polynomial finite element methods for
the far field and T-matrix computations.
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1 Introduction

Wave scattering simulations involve computing the acoustic/electromagnetic
field generated when a known incident field interacts with an obstacle. The T-
matrix method is based on the fact that both the incident and scattered fields
possess series expansions in terms of wave functions, and the coefficients in
the series are connected by an infinite matrix known as the T-matrix [3, 6, 7].

Applications typically use a truncated approximation to the infinite T-matrix.
The truncated T-matrix method is extremely useful in applications such as
multiple scattering because the individual T-matrices of each individual scat-
terer are efficiently combined using the translation-addition theorem [6, 7].
The T-matrix is essential in applications requiring averaged scattering prop-
erties over a range of incident directions or orientations, because such aver-
ages are computed directly from the T-matrix.

The T-matrix was developed initially for electromagnetic scattering by Wa-
terman [8]. The truncated T-matrix is usually computed using the null field
method [3, 6, 8]. For medium to high frequency problems or high aspect ratio
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obstacles the null field method is numerically unstable due to fast growth of
the Hankel functions used in the null field method [6].

Recently, alternative algorithms based on far field computations have been
developed for three dimension electromagnetic [5] and acoustic scattering [4].
These algorithms replace the spherical Hankel functions by their far fields,
which do not exhibit fast growth, leading to numerically stable algorithms.
These algorithms critically depend on the availability of fast surface integral
algorithms for numerical far field computations.

We describe a new, numerically stable, far field based algorithm for comput-
ing the T-matrix for two dimensional acoustic/dielectric scattering. We focus
on the problem of how to use numerically computed far field values (obtained
using any method) to compute the T-matrix for sound-soft, sound-hard, ab-
sorbing, and dielectric obstacles. In this work, for far field computations, we
use the method of fundamental solution in contrast to the surface integral
equation techniques [5, 4]. The advantage of this method is that it is appli-
cable to a range of boundary conditions, and to scattering by polygons by
the addition of non-polynomial finite elements [1].

The next two sections develop all of the details required for the T-matrix
computations. Section 4 proves a symmetry property of the acoustic T-
matrix that can be used to measure the quality of a numerically computed
truncated T-matrix. Section 5 computationally demonstrates our acoustic
T-matrix computations for smooth and polygonal obstacles with a range
of boundary conditions, including a transmission (tm-polarized dielectric
scattering) problem for a penetrable scatterer.
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2 Expansions of the acoustic field

The time-harmonic radiating acoustic field u scattered by a two dimensional
scatterer D in a homogeneous medium satisfies the Helmholtz equation

4u(x) + k2u(x) = 0 , x ∈ R2 \D , (1)

where k = 2π/λ is the wavenumber and λ is the wavelength, and the Som-
merfeld radiation condition

lim
|x|→∞

√
|x|

(
∂u

∂x
− iku

)
= 0 , (2)

where the limit holds uniformly in all directions x̂ = x/|x|. The scattered
field u is induced by the incident field ui with wavenumber k via one of the
following boundary conditions (properties of the scatterer)

U(x) = 0 , x ∈ ∂D , (sound-soft) (3)

dU

dn
(x) = 0 , x ∈ ∂D , (sound-hard) (4)

U(x) + λ
dU

dn
(x) = 0 , λ ∈ R, x ∈ ∂D , (absorbing) (5)

where U = ui + u is the total field, or via the transmission (tm-polarized
dielectric) boundary conditions

U(x) = V(x),
dU

dn
(x) =

dV

dn
(x), x ∈ ∂D , (penetrable) (6)

where U(x) = ui(x)+u(x) is the total exterior field for x ∈ R2 \D and V(x)
is the interior field for x ∈ D , satisfying the interior Helmholtz equation in D
with wavenumber kint. Hence for transmission (or dielectric) scattering, the
refractive index (or dielectric constant) is k/kint (or k2/k2int).

The T-matrix connects expansions of the incident field and scattered field in
terms of wave functions. In particular, the basic tools for the expansions are
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the regular wave functions

ẽn(x) = J|n|(k|x|) exp(inθ) , θ = θ(x), (7)

and radiating wave functions

en(x) = H
(1)
|n| (k|x|) exp(inθ) , θ = θ(x), (8)

where Jn is the first kind Bessel function of degree n, and H
(1)
n is the first

kind Hankel function of degree n. Here we use that the point x has a unique
representation in polar coordinates with radius |x| and azimuth θ.

Both kinds of wave functions satisfy the Helmholtz equation (1). The radi-
ating wave functions additionally satisfy the radiation condition (2), a con-
straint on the scattered acoustic fields that guarantees their outgoing nature.
The T-matrix is obtained by expanding the incident and scattered fields as

ui(x) =

∞∑
n=−∞pnẽn(x), u(x) =

∞∑
n=−∞anen(x). (9)

Typically the coefficients pn of the incident field are known. For example,
these coefficients are given analytically when ui is a plane wave. Since the
Helmholtz equation (1) (which connects the incident and scattered fields) is
linear, there exist coefficients tn ′,n such that

an ′ =

∞∑
n=−∞ tn ′,npn .

Writing a = (an) and p = (pn), and denoting T for the T-matrix, we have

a = Tp, T = [tn ′,n] . (10)

Using (10) the coefficients in the expansion of the scattered field are com-
puted easily (for any incident direction) by matrix vector multiplication, if an
appropriately truncated version (with high order accuracy) of the T-matrix
(associated with D) is computed and stored.
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3 Far field based T-matrix computation

A given radiating acoustic field u has far field u∞ and acoustic cross section
(acs) εdB (measured in decibels), defined by

u∞(x̂) = lim
|x|→∞

√
|x|e−ik|x|u(x) , εdB(x̂; d̂) = 10 log10(2π|u

∞(x̂)|2) , (11)

which describes the asymptotic behaviour of the exterior field at large dis-
tances from the scatterer. Here d̂ is the direction of the incident field and
the resulting far field is measured in the direction x̂ = x/|x|.

For backscattered acs, x̂ = −d̂ . The backscattered acs of the scatterer as
a function of x̂ (and hence d̂) around D is known as the monostatic acs. To
describe the monostatic acs of a scatterer, the exterior Helmholtz problem
needs to be solved with thousands of incident directions. For monostatic
acs, T-matrix is an extremely powerful tool. For bistatic acs, the incident
direction d̂ is fixed and the resulting field is measured around the obstacle.

Let Sui denote the scattered field induced by the incident field ui through
one of the the boundary conditions (3)–(6). Applying the operator S to the
series representation (9) for the incident field we get

u = Sui = S

∞∑
n=−∞pnẽn =

∞∑
n=−∞pnSẽn , (12)

where each Sẽn denotes the scattered field induced by ẽn. Each Sẽn is a radi-
ating field that satisfies the Helmholtz equation (1) and so has an expansion
(with some coefficients tn ′,n) in the radiating spherical wave functions

Sẽn =

∞∑
n ′=−∞ tn ′,nen ′ , n = −∞, . . . ,∞ . (13)

Using (11), and the limit as r→∞ of the Hankel functions H
(1)
n (r), the far
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field e∞n ′ of the radiating spherical wave function en ′ is

e∞n ′(θ) =
√
1

πk
(−i)|n

′|(1− i) exp(in ′θ) . (14)

Using (13) and (14), we derive for Sẽn the far field

S∞ẽn =

∞∑
n ′=−∞ tn ′,n

√
1

πk
(−i)|n

′|(1− i) exp(in ′θ) . (15)

The key to our algorithm is that we compute an accurate approximation
to S∞ẽn using some appropriate numerical technique. Thus in (15) only the
T-matrix entries tn ′,n are unknown. Using the orthogonality of exp(in ′θ), we
pick out the T-matrix entries from a numerically computed approximation
to S∞ẽn by taking the inner product

tn ′,n =
1

4

√
k

π
i|n
′|(1+ i)〈S∞ẽn, exp(in ′θ)〉, (16)

where 〈·, ·〉 is the usual inner product on the unit circle.

For practical computations the infinite T-matrix must be truncated, so that
we restrict to wave functions of order n, n ′ = −N, . . . ,N , in all expansions.
That is, we replace the symbol ∞ in all of the above infinite sums with a
parameter N. In practice we evaluate the inner product (16) using a Gauss
quadrature rule of order 2N + 2 . This quadrature scheme converges super-
algebraically for smooth functions on the circle such as those in (16).

Using (10) and (16), to compute the T-matrix we must perform one far field
computation to compute, using any method, an approximation to the far
field S∞ẽn for each incident wave function ẽn, n = −N, . . . ,N . That is,
for a chosen truncation parameter N, we compute solutions of (1)–(6) with
ui = ẽn, for n = −N, . . . ,N . For the numerical experiments in Section 5
we compute the far fields using the method of fundamental solution (mfs) in
the case of smooth boundaries ∂D, and mfs combined with a non-polynomial
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finite element method for polygonal boundaries ∂D. Our implementation is
based on a new T-matrix class which extends mpspack [1]. The high order
convergence of the mfs solution leads to small linear least squares problems
that we solve very efficiently using qr factorisation, even for several right
hand sides induced by the many incident wave functions.

4 Symmetry properties of the T-matrix

The accuracy of a numerically computed T-matrix is usually measured us-
ing symmetry properties. A symmetry property similar to the one proved
below is known for three dimensional sound-soft acoustic scattering [6, The-
orem 7.4]. To our knowledge (and based on discussions with Martin [6]) the
following two dimensional counterpart is new, even for the sound-soft case.

Theorem 1 Consider the scattering problem for an obstacle D satisfying
one of the boundary conditions (3)–(6). Then the infinite T-matrix satisfies

T + T∗ + 2T∗T = 0 , (17)

where T∗ denotes the conjugate transpose of T .

Proof: Let Ω be a disk with circular boundary ∂Ω, with radius a circum-
scribing the scatterer D, and for fields U,V on Ω, define the sesquilinear
functional

[U,V ] =

∫
∂Ω

(
U
∂V

∂n
− V

∂U

∂n

)
dS .

Using the Wronskian for the Bessel and Hankel functions [2, Equation (3.56)]
we have

[ẽn, ẽn ′] = 0 , [ẽn, en ′] = [en, ẽn ′] = −4iδn,n ′ , [en, en ′] = −8iδn,n ′ . (18)
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Let U and Ũ be total exterior field solutions of (1) with incident and scat-
tered fields satisfying one of the boundary conditions (3)–(6). Using Green’s
theorem in the region between ∂D and ∂Ω and (1),

[U, Ũ] =

∫
∂Ω

(
U
∂Ũ

∂n
− Ũ

∂U

∂n

)
dS

=

∫
Ω\D

(
U4Ũ− Ũ4U

)
ds+

∫
∂D

(
U
∂Ũ

∂n
− Ũ

∂U

∂n

)
dS

=

∫
∂D

(
U
∂Ũ

∂n
− Ũ

∂U

∂n

)
dS . (19)

If U and Ũ satisfy the Dirichlet boundary condition (3) or the Neumann
boundary condition (4), then the integrand of the boundary integral in (19)

is zero and hence [U, Ũ] = 0 .

If U and Ũ satisfy the Robin boundary condition (5), then

U
∂Ũ

∂n
− Ũ

∂U

∂n
= −λ

∂U

∂n

∂Ũ

∂n
+ λ

∂Ũ

∂n

∂U

∂n
= (λ− λ)

∂U

∂n

∂Ũ

∂n
.

Since λ ∈ R in (5), we have λ−λ = 0 and hence, in this case also, [U, Ũ] = 0 .

On the other hand, suppose that U and Ũ satisfy the transmission boundary
condition (6) with corresponding interior fields V and Ṽ . Then using (6),

(19), Green’s theorem inside D, and that V and Ṽ satisfy the Helmholtz
equation (1) inside D,

[U, Ũ] =

∫
∂D

(
U
∂Ũ

∂n
− Ũ

∂U

∂n

)
dS =

∫
∂D

(
V
∂Ṽ

∂n
− Ṽ

∂V

∂n

)
dS

=

∫
D

(
V4Ṽ − Ṽ4V

)
ds = 0 .
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Thus, for all boundary conditions (3)–(6) (with λ ∈ R for the Robin boundary

condition) we have established [U, Ũ] = 0 .

Expanding ui and ũi in terms of the entire wave functions and u and ũ in
terms of the radiating wave functions,

U(x) =

∞∑
n=−∞

(
dnẽn(x)+cnen(x)

)
, Ũ(x) =

∞∑
n ′=−∞

(
d̃n ′ ẽn ′(x)+ c̃n ′en ′(x)

)
,

and using the T-matrix

cn =

∞∑
m=−∞ Tnmdm , c̃n ′ =

∞∑
m ′=−∞ Tn ′m ′d̃m ′ . (20)

Using these expansions, together with sesquilinearity of [·, ·], (18) and (20),

[U, Ũ] =

[ ∞∑
n=−∞

(
dnẽn + cnen

)
,

∞∑
n ′=−∞

(
d̃n ′ ẽn ′ + c̃n ′en ′

)]

=

∞∑
n=−∞

∞∑
n ′=−∞

(
dnd̃n ′[ẽn, ẽn ′] + dnc̃n ′[ẽn, en ′]

+ cnd̃n ′[en, ẽn ′] + cnc̃n ′[en, en ′]
)

=

∞∑
n=−∞−4i

(
dnc̃n + cnd̃n + 2cnc̃n

)
= −4i

{ ∞∑
n=−∞

∞∑
m=−∞ Tnmdnd̃m +

∞∑
m=−∞

∞∑
n=−∞ Tmndnd̃m

+ 2

∞∑
m ′=−∞

∞∑
n=−∞

∞∑
m=−∞ Tm ′nTm ′mdnd̃m

}

= −4i

∞∑
n=−∞

∞∑
m=−∞

(
Tnm + Tmn + 2

∞∑
m ′=−∞ Tm ′nTm ′m

)
dnd̃m.
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This must hold for any incident fields ui and ũi and so using [U, Ũ] = 0 , we
get

Tnm + Tmn + 2

∞∑
m ′=−∞ Tm ′nTm ′m = 0 , n,m = −∞, . . . ,∞ .

That is,
(T∗ + T + 2T∗T)mn = 0 , n,m = −∞, . . . ,∞ .

♠

5 Numerical experiments

We demonstrate the convergence and accuracy of our algorithm using the
symmetry property in Theorem 1 for smooth and polygonal scatterers with
a range of boundary conditions. We visually demonstrate the algorithm with
acoustic cross section computations, using our computed T-matrix.

The exact infinite T-matrix satisfies (17). The equality to zero in (17) does
not hold when the infinite T-matrix is replaced by its numerically computed
and truncated approximation. In this case, the deviation from zero of the
right hand side is useful as a measure of the error in the approximate T-
matrix. In particular, we define

Err(N) := max
n=−N,...,N

max
n ′=−N,...,N

|(T∗ + T + 2T∗T)n ′n| (21)

as a measure of the error in our truncated T-matrix. A nice feature of Err(N)
is that it measures errors due to truncation of the T-matrix as well as errors
in the computation of the T-matrix entries.

For our numerical experiments, we developed a T-matrix class for the far
field and T-matrix computations involved in evaluating S∞ẽn using the fun-
damental solution and non-polynomial finite element methods [1].
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Table 1: Convergence of backscattered acs (in decibels per square metre)
and T-matrix for a sound-soft and sound-hard trefoil of diameter 16λ.

N sound-soft ∂D Err(N) sound-hard ∂D Err(N)
backscattered acs in (21) backscattered acs in (21)

58 −1.0250887 6.5e−4 −0.9453861 7.9e−4
63 −1.0214336 1.3e−5 −0.9560620 1.7e−5
68 −1.0215187 1.2e−7 −0.9558159 1.5e−7
73 −1.0215179 1.2e−9 −0.9558174 1.7e−9

Table 2: Convergence of backscattered acs (in decibels per square metre)
and T-matrix for an absorbing and penetrable trefoil of diameter 16λ.

N absorbing ∂D Err(N) penetrable ∂D Err(N)
backscattered acs in (21) backscattered acs in (21)

58 −0.932000 8.7e−4 0.9369388 3.1e−4
63 −0.943797 1.9e−5 0.9396784 4.7e−6
68 −0.943520 1.6e−7 0.9396014 3.9e−8
73 −0.943522 1.8e−9 0.9396021 3.2e−9

Table 3: T-matrix computation error and time for various obstacles.

Scatterer (type) diameter Err cpu time
trefoil (sound-soft) 12λ 1.9e−11 0.7 s
trefoil (sound-soft) 16λ 1.2e−09 3.3 s
trefoil (sound-hard) 16λ 1.7e−09 3.2 s
trefoil (absorbing) 16λ 1.8e−09 3.3 s
trefoil (penetrable) 16λ 3.2e−09 4.3 s
square (sound-soft) 12λ 2.6e−13 33.4 s
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In our experiments, we first compute the truncated N × N T-matrix for
various values of N. The required N depends on the diameter aλ of the
scatterer, where λ = 2π/k is the wavelength of the incident wave and a is
a positive constant. Tables 1 and 2 demonstrate increasing accuracy of the
T-matrix with respect to N for a smooth trefoil shaped obstacle (Figures
1 and 2), with diameter 16λ and various properties, by tabulating Err(N)
in (21) and also the backscattered acoustic cross section (acs), computed

using the T-matrix, for an incident wave ui(x) = exp(ikx · d̂) where d̂ =
(
√
3/2, 1/2). Increasing accuracy in the backscattered acs is indicated by

the increasing number of matching digits as N increases.

Table 3 summarises the cpu time required to compute the T-matrix, in
Matlab on a 2.26 GHz laptop, and error in the T-matrix for the trefoil and a
square scatterer. Figures 1 and 2 plot their monostatic acs.
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Figure 1: T-matrix based simulation of monostatic acs (in decibels per
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Figure 2: T-matrix based simulation of monostatic acs (in decibels per
square metre, with 1000 incident waves) of a non-smooth sound-soft scatterer
of diameter 12λ.
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