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Putting the art before the force
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Abstract

We use a dataset from the Battle of Kursk to test three estimators
of attrition: linear, quadratic and log dependence on the number
of soldiers in each force. Data giving force numbers per day show
significant collinearity, so we use force and loss ratios for our tests.
We demonstrate that the strongest correlate in the dataset for a sides
attrition is its own force strength. This supports the log estimator,
and we evaluate the proposition that this counterintuitive connection
is a product of the pre-battle art of war, where commanders attempt
to balance their forces to their expectations of threat. Thus expected
losses generate actual force numbers whereas we seek information on
the ways that force numbers generate actual losses, and both processes
are based on the same correlation information. We argue that the
dataset must still contain information on the mechanisms of attrition,
so we widen our search criteria and uncover some remarkable facts.
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1 Introduction

There is reason to believe that the attrition suffered in a battle depends upon
the relative strengths of the two forces. Clausewitz [3] states that “superiority
of numbers admittedly is the most important factor in the outcome of an
engagement”. There is also reason to believe that numbers are less important
than other factors. Clausewitz [3] also states “To accept superiority of
numbers as the one and only rule, and to reduce the whole secret of the art
of war to the formula of numerical superiority at a certain time in a certain
place was an oversimplification that would not have stood up for a moment
against the realities of life”. Lanchester equations are based on a belief in
the overwhelming importance of numbers. They have been used for more
than ninety years and have generated over 700 theoretical developments, yet
they have never been validated for complex land battles despite numerous
attempts [13].

Lanchester–Osipov models are coupled first order differential equations which
describe the evolution of the numerical force strength on each side, given
the initial values. Initially there were two models: one for aimed fire (also
known as the square law), the other for unaimed fire (known as the linear
law). The need to validate was recognised early. Osipov [8] (1915) based
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his version of the theory on the outcomes of a large number of historical
battles. He developed the square law model for smaller battles and proposed
a 3/2 law for larger battles. Importantly, the 3/2 law was based on the
observation that, for large forces, the casualties suffered by a side seemed to
be related to the square root of their own initial force size. In the square
and linear laws, the casualties for a side are related in some way to the
numerical force strength of the opposing side. Older historical battle data
was simply the beginning and end numerical strengths for the two sides,
so results of one battle would equally support the square and linear laws
and the results of many battles were needed. This required the astounding
assumption that all things, other than force sizes, remained equal. Validation
was initially aimed at deciding which of the square and linear laws was better.
Outcomes were inconsistent, with neither law performing well [11]. Analysis
of empirical data led to the discovery of the log law, where the attrition
rate for a side was driven by its own force numbers [10]. The significance of
the log law has been a matter of speculation and the search for information
to explain that significance has been a major driver for this article and its
companion [9]. When time phased data, covering the daily numerical force
strengths and numerical casualties for each force, became available for the
Battles of Kursk and the Ardennes it caused renewed interest in discriminating
between Lanchester laws [1, 5, 4, 7, 6]. Bracken [1] (1995) defined a generalised
form of Lanchester equations which includes the square, linear and log laws
as particular cases, and applied it to the Ardennes dataset. The general form
had five parameters: the individual effectiveness for each side, an exponent
for the ‘shooting force’, an exponent for the ‘target force’, and a ‘tactical
parameter reflecting which side is defending or attacking’. He chose days
2 to 11 of the Ardennes dataset for analysis and interpreted the overall result
as supportive of the linear law. Hartley [5] used the generalised equations but
without the tactical parameter, and found support, over the entire 32 days of
the Ardennes dataset, for a mixed log–linear law. Fricker [4] also analysed
the entire Ardennes dataset, concluding that it supported the log law and he
interpreted this as meaning that the probability of kill “is essentially constant
over the range of the opponent force sizes given in the data”. Lucas and
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Dinges [7] developed their fcud data (about those actually fighting on each
day) from the Kursk database [2] and found, for the homogeneous case, that
the linear law worked best R2 = 0.622 , followed by the log law R2 = 0.535
and the square law R2 = 0.289 . Lucas and Turkes [6] (2004) used a weighted
sum of people, armoured personnel carriers, tanks and artillery to calculate
the force strength for each side and undertook a complex analysis of the
data from the Battles of Kursk and Ardennes. For the Ardennes, the force
strengths gave R2 of around 0.3 but with little to distinguish the three models,
while a simple homogeneous approach using the numbers of soldiers gave
R2 < 0.1 . For Kursk data there was no such distinction, with force strength
and force numbers both giving R2 of around 0.1 for all three models. Lucas
and Dinges [7] split the data into four phases (for the German side these
are attack against prepared defences, attack against hasty defences, defence
against counterattack and withdrawal) and found that the overall performance
of all three models improved remarkably to R2 values around 0.8 and that a
model estimating attrition from the average attrition in each of the phases
also gave an R2 of 0.8.

We use the Kursk dataset and uncover a succession of complications. Multiple
regression can be used to infer importances for multiple mechanisms, but it
fails here because of significant collinearity between the numbers in the two
forces. To reduce the effect of collinearity, we study loss ratios, showing that
there is overwhelming support for the log law, where losses appear to have
nothing to do with enemy forces. This unexpected and counterintuitive result
needs further analysis, so we consider a suggestion [11] that the collinearity
in force numbers can result from planning and that the collinearity brings
a correlation between the losses for a side and their own force numbers,
artificially supporting the log law. Commanders will balance forces, so we
should expect collinearity; however, artificial support for the log law can only
occur if there is underlying support for the linear or square laws.

When Weiss [12] developed his version of the linear law, he proposed that the
attrition rate for a force results from the number of enemy shots through the
area occupied by the force and the density of the force in that area. He related
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the number of shots to the number of shooters (on the opposing side) and
the density of soldiers to the number in the force. We find that the product
of the quantity of small arms fire (tonnes per day) for the German force and
the force numbers for the Soviet force was strongly correlated (0.89) with
Soviet daily attrition, which seems to provide strong support for the linear
law. However, when we relate the German small arms usage to the number
in the German force, we see that they are completely independent. This is
contrary to the Lanchester assumption that the number of shooters in a force
can be represented by the number of soldiers in that force, and happens in
spite of the restriction of daily force numbers to only those who are involved
in the battle.

2 Linear modelling of Kursk data

Multiple regression is the obvious extension to previous [7] simple regression
based estimates of the relative importance of the three laws. This failed due
to collinearity between the numbers in each of the opposing forces over the
fourteen days of the battle (ρ = 0.6). To minimise the effect of collinearity,
we use loss ratios instead of losses in the analysis. This ratio analysis is based
on the state form of the Lanchester equations.

For the square law, the attrition rate equations are

dx

dt
= −kyy and

dy

dt
= −kxx , (1)

where the number of entities (for example, soldiers) in each side (x,y) is the
state of the system and kx and ky are the ‘effectiveness’ coefficients. The
square law is obtained by integration of the related state equation

dy

dx
=
kx

ky

x

y
. (2)
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Thus the loss ratio ∆x/∆y is driven by y/x, which is the inverse of the related
force ratio, and we expect these two ratios to be well correlated if the square
law is dominant. The related equations for the linear law are

dx

dt
= −axy and

dy

dt
= −bxy , (3)

where a and b are rate coefficients, with a state equation

dy

dx
=
b

a
. (4)

In the linear law case, the loss ratio ∆x/∆y should be constant and should
not be correlated with either of x and y. The equations for the log law are

dx

dt
= −c1x and

dy

dt
= −c2y , (5)

with state equation
dy

dx
=
c2

c1

y

x
. (6)

Thus, the log law’s loss ratio should be driven by the related force ratio.

The appropriateness of the standard Lanchester–Osipov continuous model of
a discrete system is discussed in more detail in a companion article [9].

2.1 Results of ratio analysis

To test each of the models we first need to define the force ratio. Two
definitions are possible: either Soviet force numbers divided by German force
numbers; or the inverse. Each gives similar results but to avoid confusion we
select

fr =
Soviet

German
. (7)

The loss ratio must be calculated in the same way, Soviet divided by German.
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Figure 1: Loss ratio as a function of force ratio using daily Kursk data.

The log law will be supported by Kursk data if there is a strong correlation
between loss ratio and force ratio. Figure 1 shows a positive linear relationship.
This is supported by a moderately strong correlation (0.70) between loss ratio
and force ratio. This graph is evidence that the force ratio could be a factor
in the expression for the loss ratio.

The square law drives the loss ratio in a direction opposite to the observations
(see Figure 2). This is supported by a negative correlation (−0.70) between
loss ratio and inverse force ratio. The square law, applied to total force
numbers, cannot explain the Kursk data.
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Figure 2: Loss ratio as a function of inverse force ratio for daily Kursk data.
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Figure 3: Loss ratio as a function of German numerical strength for daily
Kursk data.

While there is an obvious connection between loss ratio and force ratio, there
is still room for the linear law to be supported. This would require the loss
ratio to be independent of the daily force numbers of the two sides.

Figure 3 shows that there is almost no connection between the values of loss
ratio and the number of people in the active German force. This is supported
by correlation (0.20). Figure 4 shows the equivalent plot for values of loss
ratio against the related number of people in the active Soviet force. There is
a moderately strong correlation (0.69). The linear connection between loss
ratio and Soviet force numbers is sufficient to exclude the the linear law, using
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Figure 4: Loss ratio as a function of Soviet numerical strength for daily
Kursk data.
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total force numbers, as an explanation of the Kursk data.

2.2 Putting the art before the force

Speight [11] suggested that “the observed results (are) due to (commanders)
calculation of the resources required for mission success”. This is a double
hypothesis: first that force balancing causes collinearity in force numbers;
second that collinearity between force numbers produces an artificial support
for the log law. Force balancing can and does occur either prior to or on the
day so there is support for the hypothesis that force balancing contributes to
collinearity in force numbers. However, we question the second part of the
hypothesis.

If the underlying attrition mechanisms follow either the linear or square laws,
then losses for the Y force will depend on the number x in the X force. A
strong correlation between x and y, the number in the Y force would mean
that y could also be used to predict Y force losses, but not quite so well as x.
When part of the attrition is via the linear law and the rest is via the square
law, it is conceivable that the correlation effect could make it appear that the
log law was dominant.

Two events are needed for collinearity to artificially support the log law. First,
for the effect to occur at all, Lanchester–Osipov models need to be valid;
second, for the log law to dominate, the underlying mechanisms need to be a
mixture of the linear and square laws. Our ratio analysis has shown that the
dataset provides absolutely no support for the square or linear laws and that
it unequivocally supports the log law. In fact the collinearity effect may work
in the opposite direction, providing some support for square and linear laws
in earlier studies.
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Figure 5: Volume of German small arms fire as a function of German
numerical strength using daily Kursk data.
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3 What is the database telling us?

We widen our search for causative factors to cover usage of ammunition. The
usage of ammunition is clearly related to the number of shots fired, so, for
example following Weiss [12], we could expect that the product of the daily
small arms ammunition tonnage for the X force and the daily force numbers
for the Y force will represent the effect of the linear law. This product has a
correlation with the losses ∆y of r = 0.89 . The rate of fire is usually given
by αx where α is the estimated firing rate per shooter and x is taken to be
the number of shooters. So why does the linear law not give such a high
correlation? Inspection of force numbers x and daily small arms tonnages
for the X force, in Figure 5 shows that, for days 4 to 14 the two values are
completely independent. The number of bullets fired each day is independent
of the number of soldiers, for the Kursk data.

Losses result from the actions of the enemy force, yet, for Kursk, they are
independent of the total number in the enemy force. Similarly, moving
bullets result from the actions of enemy shooters, yet the number of bullets is
independent of the number of soldiers in the enemy force. The problem appears
to come from attempts to relate the daily variations in enemy effectiveness
with daily variations in enemy force numbers. We investigate this problem in
a companion article [9].
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