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A simple battle model with explanatory power
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Abstract

Attrition equations have military use and are also used in biological
and economic modelling. We model the aggregation of attrition in
a battle to explain the strong support in historical data for the log
law, which conventionally is thought to apply mainly to losses through
accident or illness. Support for the log law has been found in many
studies of battle data and this has yet to be explained. Several histori-
cal studies found support for a mixture of attrition laws, suggesting
that different laws could apply to different parts of the battle. We
hypothesise that the log law could be supported through aggregation
effects when other laws apply on a micro scale. We assume that all
laws work at skirmish level and show that aggregation effects will
only support the log law if the individual skirmishes being aggregated
are themselves modelled by the log law. We argue that the extreme
support for the log law in the Kursk dataset is due to an overwhelming
support for that law at the level of individual skirmishes, and that the
conventional use of square and linear law for skirmishes is incorrect.
These results suggest that theoretical changes to attrition equations
should be based on studies of small unit attrition as aggregation effects
do not cause cross over from square or linear laws to log law.
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1 Introduction

There are many models of military conflict, with individual models varying
in the level of detail required and in the generality of their outcomes. At
the most abstract and generalised level, Lanchester–Ozipov models [7] have
been strongly used for more than ninety years: for example, a review [13]
to 1993 listed over 700 articles, most of which were theoretical developments.
Yet these models have never been empirically validated for battles which are
aggregations of shorter engagements.

Lanchester–Ozipov models are coupled first order differential equations for
force attrition, and are instantiations of

dx

dt
= −f(x,y, v), (1)

where x and y are the numbers in the X and Y forces at time t and v is
a vector of other variables, such as contextual and tactical variables, and
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where the right-hand side f incorporates interactions between variables. The
instantiations are the square, linear and log laws, where the square law has

f(x,y, v) = k1(v)y , (2)

with the attrition rate a multiple of the number of enemy soldiers. The linear
law has

f(x,y, v) = k2(v)xy , (3)

where there is difficulty in acquiring targets or the firing is unaimed and
attrition depends equally on the number of shooters and the number of targets.
The log law is based on empirical data [8] and has

f(x,y, v) = k3(v)x , (4)

where the attrition rate is completely independent of the number in the enemy
force. The coefficient ki(v) is constant for the event being modelled.

There are two major problems for Lanchester equations which arise from
historical battle data [2, 5, 6]. First, the three Lanchester–Ozipov laws do
not explain much of the variation in daily attrition. Second, the log law has
an unexpected and unexplained prominence. In a companion article [9] we
searched the Kursk dataset [4] for information to explain the prominence
of the log law. Speight [12] suggested that the art of war, in the form
of force balancing by commanders, artificially caused the log law to be
prominent. We found significant collinearity between the daily numbers in
the two forces, which supports the existence of force balancing. However,
collinearity interferes with statistical discrimination and, to minimise the
interference, we analysed the data using force ratios and loss ratios. The
results unequivocally supported the log law and rejected the square and linear
laws; a remarkable outcome which requires explanation.

We show that the Kursk dataset supports a pure log law. We also develop
an aggregation model to determine if square law and linear law skirmishes
aggregate to give an apparent support for the log law and use it to show that
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the aggregate attrition will support a pure log law only if the great majority
of the skirmishes also follow the log law.

We follow the historical approach in using a continuous model for a discrete
variable (attrition). The model is essentially statistical, with expected values
being calculated.

2 Aggregation effects

Land warfare is complex. Helmbold [3] (1964) stated that (historical data)
“suggests that victory in battle is primarily determined by factors other than
numerical superiority”. The complexity is due to many factors, including
contextual variables such as terrain, weather, engineering works, the mix and
numbers of different types of entities on each side, the actions or engagements
being undertaken by entities, and that a battle is the aggregation of all
of the engagements [2, 6, 12]. Context can change within an individual
engagement [12], so we define skirmishes which may be a fraction of an
engagement, in time and space, for which the context is constant. We first show
that the daily attrition for the Kursk dataset [4] displays an apparent linear
dependence on the force ratio, then we remove this dependence, developing
a test for any residual relationship between daily attrition and force ratio.
We show that there is no residual connection for the Kursk dataset so that
the aggregate trend at Kursk is a pure log law, not merely in the log-linear
spectrum. Then we build the aggregation model to investigate ways that a
pure log law can be formed for the aggregate attrition, showing that it can
be formed only if the skirmishes are also pure log laws.
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2.1 Log law trend in data and a test for underlying
dependence

Under a pure square law dependence, the loss ratio ∆y/∆x would be propor-
tional to the inverse force ratio x/y. For pure linear law dependence, the loss
ratio would be constant. For pure log law the loss ratio would be proportional
to the force ratio y/x. Some analyses, both empirical and via simulation,
have reported losses which have a dependence in between the square law and
the log law; that is, with the power of x somewhere between 1 and −1 and
the power of y between −1 and 1. We show that, for the Kursk dataset, the
dependence of loss ratio on force ratio is pure log law. In Figure 1 the daily
loss ratio is plotted against the daily force ratio for the fourteen days. The
graph shows a distinct proportionality between the two variables, with the
trend appearing to cut the axes very close to the origin.

If the trend is purely log law, it must follow a relationship

∆y

∆x
= F

y

x
, (5)

where F is independent of the force ratio and nominally constant although it
varies from day to day due to other factors. Using the fractional losses for
the two forces, we construct the fractional loss ratio

∆y/y

∆x/x
= F . (6)

If the relationship between loss ratio and force ratio is not purely a log law,
then the fractional loss ratio will show a residual dependence on the force
ratio.

There is no such residual relationship, as seen from the scatter diagram in
Figure 2. The correlation between the two variables is almost zero (0.036)
and the probability that it is zero is p = 0.90 .
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Figure 1: Loss ratio as a function of force ratio using daily Kursk data.
Points annotated by day number.
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Figure 2: Fractional loss ratio as a function of force ratio for daily Kursk
data. Points are annotated by day number. Force ratio calculated from the
number in each force who were active on that day
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2.2 The basic aggregation model

We represent each force as a set of small groups, where the groups each act
as a unit for the entire day. Force X has Nx groups where the numbers of
people are represented by {aix, i = 1, . . . ,Nx}. Similarly, for force Y, the
groups are {ajy, j = 1, . . . ,Ny}. The only restriction on group size is that
1 6 aix 6 x0 and 1 6 ajy 6 y0 where x0 is the total number in the active
X force at the beginning of the day and y0 is the equivalent for force Y.
We next represent attrition for the day as the sum of attritions suffered via
skirmishes between small groups. For either side, attrition is the sum of
elements in the matrix {Azij, i = 1, . . . ,Nx, j = 1, . . . ,Ny} where z = x or
z = y . We then model the attrition due to each skirmish, integrate over the
day and aggregate over all skirmishes. Initially we do this for the case where
all skirmishes are modelled by a single law.

2.3 Square law skirmishes

Under the square law the attrition for force Y through skirmishes between aix
and ajy during a day is

Ayij =

∫
Cix(t)aix dt . (7)

If aix and ajy are functions of time, their values may change due to the actions
of other groups during the day and the analysis will be complicated. We
take a different but equivalent approach. Each group has an effectiveness
at causing attrition which is some function of the number in the group. If
a group suffers casualties, the group effectiveness, and Cix, will be reduced.
If Gix(t) is the group effectiveness, then Cix(t) = Gix(t)/aix where aix is the
number of members in the group at the beginning of the day. If an observer
measures the value of Cix(t) during the day, we approximate it by a piecewise
continuous function so that Cix(t) has the values {C1ix,C2ix, . . . ,Cmix} for
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skirmishes involving group ix during the day, where each Ckix is true for a
particular period Tkix. Then

Ayij =

m∑
k=1

CkixTkixaix = Dixaix , (8)

where Dix is defined implicitly by this equation, and the total Y force attrition
for the day is

Ay =

Nx∑
i=1

Dixaix . (9)

The weighted sum in Equation(9) also represents the dot product of the two
vectors Dx = (D1x,D2x, . . . ) and ax = (a1x,a2x, . . . ):

Ay = Dx • ax = |Dx||ax| cos θ . (10)

The expression |ax| is the size of the vector ax and we show the relationship
between Ay and x by using an elementary relationship for variance

∑
X2/n =

X
2
+ σ2. We write

Ay = Nx

√
(D

2

x + σ
2
Dx)(a

2
x + σ

2
ax) cos θ , (11)

where Dx and ax are the means of the elements of the vectors Dx, ax.
When σax = 0 then Nx

√
a2x + σ

2
ax = Nxax = x and we see that variance

in group size is the only factor which can prevent the aggregation of square
laws from being a square law. The elements of the vector Dx could vary
enormously from day to day and this variation could, to some degree, mask
the square law relationship.

2.4 Linear law and log law skirmishes

When skirmishes follow the linear law,

Ayij =

∫
Cij(t)aixajy dt , (12)
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and aggregation is over the elements of a matrix. However, we apply the
approach used for the square law to each row of the matrix and finally sum
the sums of rows to get an equation for aggregate attrition proportional

to NxNy

√
(a2x + σ

2
ax)(a

2
y + σ

2
ay) . Similarly, log law skirmishes aggregate to

be proportional to Ny

√
a2y + σ

2
ay for Y force attrition. Thus, for a force to

be represented in the same way in both aggregate attrition and skirmish
equations, the quadratic mean of its group sizes needs to be approximately
equal to the square of the linear mean. The variation in the standard deviation
for group sizes from day to day will also need to be less than any changes in
aggregate force size.

2.5 Outcomes of aggregation

If skirmishes follow a single law, only the linear law might appear to support
the log law: we show that even this possibility vanishes under the ratio test.
The aggregate attrition Ay for the linear law skirmishes might show the
proportionality Ay ∝ y if the variance of group sizes in the X force is such
that the quadratic mean of its group sizes is not almost equal to the square
of the linear mean. Our test for support for the log law uses the ratio of
losses for each side. Group sizes will be identical for each of the two attrition
equations, so in this case we will have Ax ∝ y which appears to support the
square law. When the loss ratio is formed we see that it is expected to remain
constant, supporting the linear law. For a single law aggregate to support
the log law it is necessary that the skirmishes also support the log law.

When skirmishes follow different laws, the loss ratio takes the form

∆y

∆x
=
α1x+ α2xy+ α3y

β1y+ β2xy+ β3x
. (13)

In the case of complete symmetry, the aggregate result will appear to support
the linear law, otherwise the outcome will be unpredictable except when
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there are strong asymmetries. When one side is mainly square law and the
other mainly log law, the result will again appear to support the linear law.
When one side is mainly linear law and the other is mainly square or log law,
the loss ratio will apparently depend on the numbers in one of the forces.
In the Kursk dataset, the loss ratio is correlated with the Soviet force size
(r = 0.60), raising the possibility that Soviet losses are the sum of linear and
log laws while German losses follow the log law. However, Soviet force size
correlates strongly with the force ratio (r = 0.90) raising distinct collinearity
issues. This is resolved by correlating Soviet force numbers with the fractional
loss ratio. The resulting coefficient (r = 0.09) shows that the Kursk data is
explained by a pure log law, while the aggregation analysis shows that an
aggregate log law can only be explained by log law skirmishes.

2.6 Explanations

Since the effect of artillery fire supports the log law, one explanation is
that almost all of the casualties were caused by artillery. While this would
be theoretically correct and is almost supported by published estimates
(for example, that artillery was responsible for 60% of casualties in World
War II [1]), it is hard to believe that a single technology could be responsible
for, say, 90% of casualties in a battle.

The alternative is that the other causes of attrition, such as infantry and tank
fire, are not correctly represented by the Lanchester–Osipov models at the
skirmish level. This possibility needs to be investigated.

3 Summary

Some previous studies of historical battle data detected limited support for
a mixture of three Lanchester–Osipov laws (square, linear and log), with
different laws apparently describing different skirmishes and with the aggregate
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being somewhere in between. Support for the log law has previously been seen
as an anomaly and it was proposed that collinearity between the numbers of
soldiers active each day for the two sides could cause an actual support for
the square and linear laws to apparently support the log law. In a companion
article, we minimised the effects of collinearity for the Kursk dataset by
analysing ratios of parameters for the two sides and found that the ratio data
strongly supported the log law and rejected the square and linear laws. It had
also been proposed that the aggregation of attrition from skirmishes could
cause an apparent support for the log law.

We looked for evidence of other laws underlying the support for the log
law in the Kursk dataset. The apparent proportionality between loss ratio
and force ratio was removed by the calculation of the fractional loss ratio
and that ratio was shown to be completely independent of the force ratio,
showing that the Kursk data represented a pure log law, where the loss ratio
is exactly proportional to the force ratio. The constant of proportionality
showed random variation from day to day due to other factors. We also built
a model of aggregate attrition, based on the assumption that Lanchester–
Osipov laws work at the skirmish level. Complexities in the battlefield could
interfere with the link between the skirmish model and the aggregate model.
We isolated the single factor that determines if a model at skirmish level is
also expressed at aggregate level and we showed that neither square nor linear
law at skirmish level can cause apparent support for the log law at aggregate
level. Support for the log law at aggregate level rests on support for the log
law at skirmish level, and pure log law support at aggregate level implies that
all skirmishes are also log law. On the basis of this evidence, the assumption
of the validity of square and linear laws at skirmish level is unjustified and
all mechanisms in all skirmishes need to be able to support log law attrition.

We showed that the log law is the subject of serious differences between
battle models and historical battle data. Now we raise some other important
modelling issues. Within the context of battle modelling, the validity of
continuous approximations to a discrete variable is an open question which
needs to be investigated. We also need to address possible sources of a
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dependence between the attrition for a force and the actions it has taken,
and to investigate the influence of the stochastic nature of conflict. In earlier
modelling, using Markov chains [10, 11], we showed that some stochastic
variation can be accounted for by an envelope approach and that a side can
limit its own attrition rate by controlling the time its forces spend in danger
as well as by limiting the lethality of the enemy.
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