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Abstract

Mathematical modelling of blood flow through an artery with mul-
tiple stenoses and poststenotic dilatations is surveyed in this paper. A
set of equations describes the resistance to flow ratio of an artery. Ana-
lytic solutions are based on homogenous and irrotational flow through
mathematically constructed vessels. Variations in resistance to flow
ratio are subjected to alterations in flow behaviour index, structural
variations in relation to magnitude of vessel stenosis and multiple ab-
normal segments. Our analytical framework examines the effects that
variability in arterial wall geometry have on the blood flow resistance.
The results may aid the angiographic assessment of occlusion due to
lesion development in atherosclerotic coronary arteries.
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1 Introduction

Coronary artery disease occurs when the coronary arteries narrow to such
an extent that they are unable to transport sufficient blood to the heart
muscle for it to function properly. This condition is due to cholesterol plaque
build-up, leading to a condition known as coronary artery atherosclerosis.
The two main causes of death from coronary artery disease are rupture of
the plaque causing sudden occlusion of the artery, and the slowly increasing
build-up of cholesterol plaque in the artery. Angioplasty [5] reduces the risk of
subsequent myocardial infarction and mitigates the long-term consequences
of coronary artery stenosis.

Experimentally based models of blood flow rely exclusively on empirical data.
This data is collected by invasive or non-invasive means. Angiographic ma-
chinery [6, 7, 26] assesses the reduction in flow due to these obstructions
so as to provide useful physiological data for cardiologists during cardiac
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diagnosis. Since the vessels are opaque to light, well established flow mea-
surement techniques like laser Doppler velocimetry [21, 10] or particle image
velocimetry [10] cannot be applied. In addition, these probes usually exceed
the dimensions of fine vessels and it is difficult to attain precision in invasive
blood flow experiments as probes only measure the physical properties of a
fluid over a limited subset of the flow domain and their presence also alters
the flow patterns.

Mathematical modelling provides an economical and non-invasive method
of studying blood flow through arteries. Analytical [12, 13, 14, 16, 22] and
computational [4, 11, 1] approaches can be used for arterial flow modelling.
Analytical models are best suited to exploring the underlying physics of the
situation and producing real time results for simpler situations. On the other
hand, computational models are adept at simulating flow for complicated
geometries [11, 20]. The ideal system should be as minimally invasive as
possible and be able to create an accurate computational model of the vessel
blood flow based on an anatomically correct geometry. An important design
consideration of these patient-specific vascular modelling systems [10] is the
accessibility to vascular surgeons with modest computational resources.

There is strong interest in minimally invasive operative techniques that pre-
dict the resistance to flow caused by the impingement of atherosclerotic le-
sions into the lumen and the subsequent extra shear stresses on the wall.
Power law equations have been suggested as the physiological model of this
situation. The generation of physiological data by this model, coupled with
the experience of expert cardiologists, would be more helpful toward strate-
gizing the ideal medical treatment after diagnosis.

This article examines geometrical parameters that pertain to an atheroscle-
rotic artery with an irregular curvilinear bend and their effect on the re-
sistance to blood flow. We assume non-Newtonian blood rheology as the
basis of this analytical model. The concept of flow resistance to quantify the
severity of stenosis due to atherosclerosis is not new and has been previously
studied [12, 13, 14, 16]. Clinically, surgeons and physicians define the degree



2 Theory C69

of atherosclerosis by measuring percent reduction of the vessel lumen due
to accumulation of atherosclerotic plaque [23, 24, 25]. However, we prove
mathematically that simply measuring the plaque height is not sufficient
for clinical decision making as it is not the sole parameter affecting arterial
flow resistance; the proportion of the diseased segment of the atherosclerotic
artery is also an important parameter.

2 Theory

2.1 Mathematical models of blood flow

Various mathematical models of blood flow in arteries have been devel-
oped and this section covers a brief formulation of the models. Forrester
and Young’s development of a mathematical model of blood flow in arte-
rial vessels established an important framework in the analytical solution of
non-Newtonian flow through stenosed vessels and aneurysms, elastic and vis-
coelastic tubes. The stenosis is constructed from the trigonometric equations
for modelling [2, 3]. Solution of the approximate equations governing steady
flow through stenosed arteries can be achieved [8]. Various other studies ex-
amined detailed treatment of non-Newtonian models of blood flow through
rigid and elastic walled arteries [12, 13, 14, 16]. The non-Newtonian proper-
ties of blood are appropriate for the use of the Power law, Herschel–Bulkey,
Casson, and Bingham models [19].

The power law or Ostwald de-Waele model describes a type of time indepen-
dent non-Newtonian fluid [18, 9, 12, 22] with shear dependent viscosity. The
constitutive equation of the power law model is

τ = mγ̇n. (1)

Here, τ is the shear stress, γ̇ is the shear strain rate, m is the consistency and
n is the flow behaviour index. There is no yield stress τ0 so the equation does
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not model situations where there is a finite shear stress required to overcome
viscosity and start flow. The shear strain rate γ̇ is a function of τ and is
proportional to the rate of decrease of axial velocity vz along the arterial
radius:

γ̇ = f(τ) = −
dvz

dr
. (2)

The three main categories of power law fluids are pseudo plastic, Newtonian
and dilatent, which depend on the flow behaviour index. For pseudo plastic
fluids, n < 1 , the apparent viscosity decreases as the shear strain rate in-
creases. If n = 1 , the Power law model reduces to its Newtonian case and
m = µ is the viscosity of the fluid. Bio-fluids such as blood that is described
by the power law model are pseudo plastic.

2.2 Description of arterial wall geometry

The independent variables that influence the resistance to flow ratio are the
characteristics of the blood, the geometry of the artery and its wall flexibility
characteristics. The dimensional parameters of the typical arterial segment
serve as inputs for predicting flow properties, which are important in char-
acterizing the nature of blood flow. This section defines the geometry of the
arterial wall with reference to the longitudinal plane.

Figure 1 shows the longitudinal distribution of a segment for an idealized
blood vessel structure. This single lesion segment is presented from the prox-
imal to the distal end to illustrate the case of stenosis. The axial geometry
is determined by the diseased wall height D0, shape parameter of diseased
wall segment sz for an atherosclerotic lesion of length l0 through an artery of
radius R0. An aneurysm can be constructed by negating the value of diseased
wall height D0. Variation of sz forms the lesion profile given by the solid,
dash and dotted protrusion outlines. Here, α is the distance from the origin
to the start of the diseased portion and β is the distance from the origin
to the end of it. The wall equations allow both constriction (stenosis) and
dilation (aneurysm) of the lumen.
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Figure 1: Axial variation of arterial wall with lesion development in the
rz-plane.

The axial geometry gz(z) of the diseased segment is

gz(z) =

{
D0fz, for α 6 z 6 β ,
0, otherwise,

(3)

and

fz = f(z) =
1

lsz0

sz
sz/(sz−1)

sz − 1

[
lsz−10 (z− α) − (z− α)sz

]
for sz > 2 . (4)

Given that the normalized diseased height is

h0 =
D0

R0
for − R0 6 D0 6 R0 , (5)

the equation describing the geometry of the wall after normalization is

Rz

R0
=

{
1− h0fz , for α 6 z 6 β ,
1 , otherwise,

(6)

where sz is a parameter determining the shape of the stenosis, and Rz is the
general radius of the artery. The variation of sz causes the shape of the steno-
sis or aneurysm to be skewed along the z axis. The lesion is asymmetrically
profiled about the diseased centre for sz > 2 .
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2.3 Mechanics of flow through artery with axially
varying wall

Here we assume that for non-Newtonian models applied to an irrotational,
anisotropic and homogeneous fluid, there is a linear relationship between the
pressure and the flow, and shear independent flow with no yield stress exists.
As red blood cells are 7µm in diameter, the assumption of homogeneity would
break down in narrow arteries and blood should display shear dependent flow
and require a finite yield stress to be overcome before flow can commence.

The arterial flow parameters are introduced and discussed briefly. Pincombe
and Mazumdar analysed axial flow through atherosclerotic arteries using
numerical and analytical models [12, 13, 14, 15, 17, 16]. Dependent flow
variables of interest are the reduction in flow ratio and the wall shear stress
ratio. The former measures change in blood flow flux through the abnormal
arterial segment. An accurate measure of reduced blood flow caused by
the stenosed arteries is important for assessing the degree of atherosclerosis
for patients, and indirectly assesses how much oxygen starvation the tissues
supplied by the artery have experienced. Wall shear stress ratio measures
the change in wall shear stress relative to the wall shear stress in a healthy
artery. Assessment of this quantity is helpful to cardiologists because it is
directly implicated in the genesis and development of atherosclerosis.

For variability of circumferential geometry in the transverse section of the
artery, the arterial wall radius Rz is taken as a function of z. Axial velocity
is denoted by vz. The flow rate through the artery is

Q = 2π

∫Rz
0

rvz dr . (7)

As presented by Pincombe and Mazumdar and using integration by parts,
Q is expressed in terms of r and dvz

dr
and by applying no-slip boundary con-

dition, vz = 0 when r = Rz , Equation (7) is re-expressed as

Q =

∫Rz
0

rvz dr = π

∫Rz
0

r2
(
−
dvz

dr

)
dr . (8)
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Subsituting Equation (2) into (8) leads to

Q = π

∫Rz
0

r2f(τ)dr . (9)

The shear stress

τ(r) = −
r

2

dp

dz
, (10)

where p is the pressure. Therefore the value of τ at r = Rz is

τR = τ(Rz) = −
Rz

2

dp

dz
. (11)

Re-expression of the integration in (8) and using equations (10) and (11)
yields

Q =
π

τ3R
Rz
3

∫ τR
0

τ2f(τ)dτ . (12)

Here, the plasma layer is assumed to be negligible and τR is the shear stress
at the wall. With manipulation of these equations, we eventually obtain the
flow resistance

λ =
∆P

Q
= 2m

[
(3n+ 1)

nπ
Q

]n
1

QR3n+10

IR , (13)

where

IR =

∫α1

0

dz+

k−1∑
i=1

( ∫αi+1

βi

dz
)
+

k∑
i=1

( ∫βi

αi

dz

(Rz/R0)3n+1

)
+

∫L
βk

dz , (14)

and k is the number of diseased segments considered. Note that m is the
consistency presented by the constitutive equation of the power law model,
Equation (1).

The flow resistance equation takes into consideration the overlapping wall
segments to form a geometrically complex shape. When comparing flow
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resistance ratios, the arterial length L is arbitrarily set with a unit value of 1
to ease the mathematical formulation. For a normal artery,

IN =

∫L
0

dz = 1 . (15)

Therefore, division of flow resistance for an abnormal artery with a normal
one yields the flow resistance ratio

λ̄ =
IR

IN
= IR . (16)

For a normal artery, Rz = R0 and this gives a flow resistance ratio of one.
For a fully occluded artery Rz = 0 and the flow resistance is infinite.

3 Results

3.1 Variation of flow behaviour index and wall ratio

Geometrical profiles for the arteries with a stenosis followed by an imme-
diate aneurysm can be constructed. The generated geometrical profiles for
wall ratios, l0/L = 1/4 , l0/L = 1/2 and l0/L = 1 are plotted and shown
respectively in Figure 2. The curvilinear surface of λ̄ can be generated for an
atherosclerotic artery that has the arterial bend shape parameters, sz = 2 .
The response maps generated by flow behaviour index, n = 1 , n = 2/3 and
n = 1/3 for an abnormal artery based on l0/L = 1/2 are represented by
the solid, dash and dotted meshes respectively. The maps generated for wall
ratios, l0/L = 1/4 , l0/L = 1/2 and l0/L = 1 for constant flow behaviour
index of n = 1 are represented in a similar fashion.
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Figure 2: Arterial geometrical profiles for l0/L = [1/4, 1/2, 1] for non-
overlapping lesions.
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3.2 Flow resistance based on arterial and flow
parameters

To study the effect of varying the flow and geometric properties, three sur-
face response curvilinear maps for the flow resistance ratio are generated
for different arterial configurations. Modelling of blood flow through these
geometrical arteries with different flow behaviour indices and wall ratios is
examined. The influence of flow behaviour based on various geometrical
structuring is investigated and discussed.

The curvilinear surfaces corresponding to flow resistance ratio λ̄ for the three
values of flow behaviour index, n = 1 , n = 2/3 and n = 1/3 are shown in
Figure 3(a). Here, l0/L = 1/2 , and the diseased configuration varies from a
dilation with a value of h0 = −0.5 to a stenosis with a value of h0 = +0.5 .
Therefore, the response of λ̄ is based on the variable grid of (h1,h2) that vary
from [−0.5,−0.5] to [0.5, 0.5]. A double stenosis for the examined arterial
length is shown to produce the maximum flow resistance for both plots.

The graph demonstrates that as n increases, the rate of increase in flow resis-
tance ratio λ̄ increases. The results are similar to that of the straight vessel
suggested by Pincombe and Mazumdar. This signifies that the variation of
stenosis and aneurysm has the same effect on flow resistance for both bend
and straight vessel, and is attributed to the capillary effect of the arterial
structure.

The coordinates for λ̄ = 1 is (h1,h2) = [0.0, 0.0]. This is also the point of
inflexion based on h1 and h2. The surface mesh corresponding to n = 1

takes a greater increase in flow ratio to larger values of h1 and h2 from this
inflexion point and a smaller reduction in λ̄ for smaller values of h1 and h2
from the same point as compared to the mesh for n = 2/3 and n = 1/3 .
The variation of λ̄ for n = 1 is less gradual as compared to the surface mesh
for n = 2/3 and n = 1/3 . Therefore, higher values of n are associated with
more excessive values of λ̄ for a given diseased height ratio. The greater
difference in flow ratio between n = 1 and n = 2/3 or n = 1/3 indicates



3 Results C77

−0.5
−0.4

−0.3
−0.2

−0.1
0   

0.1 
0.2 

0.3 
0.4 

0.5 −0.5
−0.4

−0.3
−0.2

−0.1
0   

0.1 
0.2 

0.3 
0.4 

0.5 

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 

 

 

 

 

n=1

n=2/3

n=1/3

h
2

h
1

λ
−

(a) Variation of flow behaviour index.
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Figure 3: Flow resistance ratio λ̄ surface response for three variations of
(a) Flow behaviour index n and (b) Wall ratio l0/L for an arterial configu-
ration where sz = 2 .
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that successive increases in n produce increasing returns.

Variations in λ̄ for the three values of wall ratio, l0/L = [1/4, 1/2, 1] are
shown in Figure 3(b). Successive increases in l0/L have diminishing effects
on λ̄, as shown by the greater difference between the surfaces for l0/L = 1/4
and l0/L = 1/2 than that for l0/L = 1/2 and l0/L = 1 . This is contrary to
the variation of flow behaviour index.

Higher values of wall ratio result in an overall increasing effect in flow resis-
tance ratio and a higher gradient of λ̄ change over a (h1,h2) region. There
is a greater separation in at specific (h1,h2) coordinates for a surface mesh
with l0/L = 1 and one with l0/L = 1/2 than for a mesh with l0/L = 1/4 and
one with l0/L = 1/2 .

4 Conclusion

The ideal flow properties prediction system requires real time computation,
as multiple possible intervention sites need to be investigated instantly. The
type of information needed by cardiologists should be generated promptly.
Mathematical modelling of atherosclerotic arteries in this research has been
performed, taking into consideration the computational time, the structural
modifications of the walls vis-à-vis diseased segmental ratios and wall ratio
variation.

The power law model of blood flow through an atherosclerotic artery can solve
the flow resistance through the abnormal segment of the artery for varying
shape parameters. The variation of flow resistance pertaining to different flow
behaviour indexes and wall ratios can be visualised using curvilinear surfaces
projected from a two dimensional grid of values for the shape parameters. In
terms of contribution to the medical field, the degree of flow resistance for
arteries may serve as a guide in a clinical diagnosis.

Clinical data such as pressure drop in atherosclerotic vessels may be useful as
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reference data for the assessment of flow resistance through variable arterial
structures. Future studies to verify our analytical model can be performed
using such clinical information.
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