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The lens of freshwater in a tropical island: the
two interface case
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Abstract

The lens of freshwater beneath a tropical island is vital for supply-
ing water to the island population. We consider the circumstances un-
der which artificial recharge through a single inlet point will maintain
the lens if no natural recharge occurs. A Greens function approach
derives an integral equation that is solved numerically for the case
in which two interfaces exist—one between salt and freshwater and
one between freshwater and air. There appear to be upper and lower
bounds on the flow rates that produce steady interface shapes. The
height of the seepage faces is dominated by the density ratios.
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1 Introduction

The water supply for many tropical islands comes from a lens of freshwater
trapped in the soil beneath the surface and above the saltwater that intrudes
from the surrounding ocean; see Figure 1. Langevin et al. [4] and Ruppel et
al. [8] discuss the importance of the management of this resource by commu-
nities living on small islands. The continued existence of this natural, potable
water supply is governed by recharge through rainfall, the location of the in-
terface between the fresh and saltwater layers and the effects of withdrawal.
If there is insufficient rainfall, or if too much water is extracted, then the lens
may diminish or disappear. To prevent this it is necessary to recharge the
lens artificially.

Hocking and Forbes [2], and Forbes et al. [1] computed flows due to with-
drawal from the freshwater layer in the two dimensional and axisymmetric
cases assuming that the soil was fully saturated within the island. That work
includes an implicit assumption that there is sufficient recharge to maintain
the water levels no matter how much is withdrawn. The computation of the
critical coning behaviour of the interface is analogous to similar problems in
unbounded domains [3, 5, 6, 9, e.g.].

We consider the case where there is insufficient natural rainfall to recharge
the aquifer and artificial pumping is required to replenish it. We allow the
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Figure 1: Sketch of tropical island of width L and height H with recharge
via a line source.

presence of an upper interface between the fresh water layer and the air. This
study determines under what conditions the lens is sustainable or can even
exist given a single point of influx and no withdrawal.

To obtain a steady flow with inflow and no withdrawal, there must be two
seepage faces on the sides of the island. Green’s second identity and an
appropriate Green’s function are used to derive a boundary integral equation
for the unknown location of the two interfaces. The output generated gives
the shape of two interfaces and the height of the seepage faces β± after
incorporating the relevant parameters, such as density ratios γ1 and γ2,
inflow rate, µ, and island length, α.

Section 2 derives the equations of the problem. Unlike the single free surface
case, there is no recharge of fluid through the upper surface of the island.
Section 3 formulates the problem as an integral equation using a Green’s
function. The details of the numerical scheme are given in Section 4 and
results and conclusions follow.
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2 Problem formulation

Consider three fluids of different density, air, freshwater and saltwater, in
a porous medium of length, L, and height, H, above sea level. We choose
a Cartesian coordinate system (x,y) centred in the middle of the island at
sea level. The seepage velocity vector ~qi in each layer i = 1, 2, 3 is given by
Darcy’s Law as

~qi = −κ∇(pi + ρigy), (1)

where κ is the total permeability of the rock and pi is the pressure. We define
the piezometric heads as

Φi = pi + ρigy , i = 1, 2, 3 , (2)

where the subscripts 1, 2, 3 denote the variables corresponding to the layers
of saltwater, freshwater and air, respectively. Assuming that the rock is fully
saturated means that the continuity equation is

∇ · ~qi = 0 for i = 1, 2, 3 . (3)

Noting equation (1) and assuming the value of κ to be constant leads to
Laplace’s equation

∇2Φi = 0 , i = 1, 2, 3 , (4)

in each of the three layers. Here, the majority of the flow occurs within the
freshwater layer, and as a consequence the flow in the air and saltwater layers
is assumed to be negligible so that Φ1 and Φ3 are constant. The region of
fresh water is then bounded by the lower interface, y = N1(x), between salt
and freshwater and the upper interface, y = N2(x), between air and fresh
water. Across the two interfaces, the pressures must match, so that

Φ2 = Φ1 − (ρ1 − ρ2)N1g on y = N1(x), (5)

Φ2 = Φ3 − (ρ3 − ρ2)N2g on y = N2(x), (6)

and since there is no flow through the two interfaces,

~q2 · ~nk = 0 on y = Nk(x), k = 1, 2 , (7)
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where ~nk are the normals to the interfaces, k = 1, 2.

The two seepage faces are in contact with the air, and so we obtain

Φ2 = −(ρ3 − ρ2)gy on x = ±L , 0 < y < B± , (8)

where B± refers to the heights of the seepage faces at x = ±L/2, respectively.
Non-dimensionalizing with respect to the island height H, and the middle
layer potential ρ2gH, and letting ρ1/ρ2 = γ1 > 1 and ρ3/ρ2 = γ2 < 1, gives

φ2 = φ1 + (1− γ1)η1 on y = η1(x), (9)

φ2 = (1− γ2)η2 on y = η2(x), (10)

φ2 = y on x = ±α/2 , 0 < y < β± , (11)

for the potential φ2 and interfaces η1(x) and η2(x) on an island of nondimen-
sional width α = L/H with seepage faces of height β± = B±/H at x = ±α/2 .
Without loss of generality we set φ3 = 0 and φ1 is constant. Henceforth, we
drop the subscript ‘2’ for the middle layer potential.

Finally, the existence of a line source at the point (xs,ys), requires that

φ2(x,y) → −
µ

2π
ln
[
(x− xs)

2 + (y− ys)
2
]1/2

as (x,y) → (xs,ys). (12)

3 Integral equation for two free surfaces

A Green’s function approach similar to that used by Hocking and Forbes [2]
is used. We seek a function G that satisfies (13) subject to the condition (14):

∇2G = δ(x− x0,y− y0), (13)

with G
(
± α
2

,y; x0,y0
)

= 0 , −∞ < y < ∞ , (14)

where δ(x− x0,y− y0) is the Dirac delta function.
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These conditions set G = 0 at x = ±α/2 , along the seepage faces. Using
conformal mapping techniques, a suitable form for G is

G =
1

4π
ln[(f− f0)

2 + (g− g0)
2] −

1

4π
ln[(f− f0)

2 + (g+ g0)
2], (15)

and we determine that

Gx =
1

2α

[
(f− f0)g− (g− g0)f

(f− f20 + (g− g0)2
−

(f− f0)g− (g+ g0)f

(f− f0)2 + (g+ g0)2

]
, (16)

Gy =
1

2α

[
(f− f0)f+ (g+ g0)g

(f− f0)2 + (g+ g0)2
−

(f− f0)f+ (g− g0)g

(f− f0)2 + (g− g0)2

]
, (17)

where f = f(x,y), g = g(x,y), f0 = f(x0,y0) and g0 = g(x0,y0), and

f(x,y) = e−πy/α sin
πx

α
, (18)

g(x,y) = e−πy/α cos
πx

α
, (19)

fx(x,y) =
π

α
e−πy/α cos

πx

α
=
π

α
g , (20)

fy(x,y) = −
π

α
e−πy/α sin

πx

α
= −

π

α
f , (21)

gx(x,y) = −
π

α
e−πy/α sin

πx

α
= −

π

α
f , (22)

gy(x,y) = −
π

α
e−πy/α cos

πx

α
= −

π

α
g . (23)

Now consider Green’s second identity∫∫
A

(φ∇2G−G∇2φ)dA =

∫
Γ

(
φ
∂G

∂~n
−G

∂φ

∂~n

)
dS (24)

where A refers to the interior of the domain bounded by the upper and lower
interfaces and the two seepage faces, denoted as Γ ; see Figure 2. Noting
that ∇2φ = 0 everywhere except at (xs,ys), the source location, and that
G satisfies Laplace’s equation, that is ∇2G = 0 except at (x0,y0), and that
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Figure 2: Schematic diagram of island of length α and the integration
paths Γ1, Γ2, Γ3, Γ4 and the seepage faces SFL and SFR. Γ3 goes around the
point (x0,y0), while Γ4 goes around the source point (xs,ys).

G = 0 along the seepage face, the left hand side of the identity is zero if the
path of integration omits (x0,y0) and (xs,ys). Therefore, if we choose the
path of integration to be around the boundary but with small circles that
exclude the singularities at (x0,y0) and (xs,ys) as shown in Figure 2, we are
left with an integral equation for integration around the boundary of region 2
only.

After careful substitution of the boundary conditions where ∂φ/∂~n = 0

and G = 0 as appropriate, adding and subtracting a term to remove the
singularity as (x,y) → (x0,y0), and carefully integrating around the two
loops Γ3 and Γ4, we are left with∫α/2

−α/2

(φ− φ0)[η
′
1Gx −Gy]dx+

∫α/2
−α/2

(φ− φ0)[η
′
2Gx −Gy]dx

−
µ

4π
ln

[
(fs − f0)

2 + (gs − g0)
2

(fs − f0)2 + (gs + g0)2

]
+ I1 + I2 = 0 , (25)
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where I1 and I2 correspond to integrals along the seepage faces,

I1 =
1

α

∫β+

0

(φ− φ0)

[
e−πy/α(e−πy0/α cos πx0

α
)

(e−πy/α − e−πy0/α)2 + (e−πy0/α cos πx0

α
)2

]
dy ,

I2 =
1

α

∫β−

0

(φ− φ0)

[
e−πy/α(e−πy0/α cos πx0

α
)

(e−πy/α + e−πy0/α)2 + (e−πy0/α cos πx0

α
)2

]
dy ,

(26)

and φ0 = φ(x0,y0) which, combined with (9) and (10) provides a closed
system for the unknown locations of the two interfaces, η1(x) and η2(x).
The recharge source is placed in the horizontal center of the island so that
all of the interfaces calculated will be symmetric.

4 Numerical method

The integral equation (25) is highly nonlinear and therefore we adopt a
numerical approach. A discrete approximation is found by taking points
xj = x1, x2, . . . , xn in x with the aim to find φj, η1j

and η2j
for j = 1, 2, . . . ,n.

This gives rise to 2n equations in 2n unknowns, each corresponding to a point
in the discrete representation of −α/2 < x < α/2. The discretised equation
is

n∑
j=0

(φj − φi)[η
′
1(xj)Gxj

−Gyj
]∆xjwj

+

n∑
j=0

(φn+j − φi)[η
′
2(xj)Gxj

−Gyj
]∆xjwj

−
µ

4π
ln

[
(fsj − fi)

2 + (gsj − gi)
2

(fsj − fi)2 + (gsj + gi)2

]
+
1

α
(I1 + I2)

= 0 , for i = 1, 2, . . . , 2n , (27)
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where ∆xj = xj+1 − xj is the step size and wj is the weighting for the trape-
zoidal rule. I1 and I2 are as in equations (26) and are accurately evaluated
using standard techniques.

The values of φi correspond to those on both surfaces, and are replaced using
conditions (9) and (10), leaving the unknown interface locations η1i and η2i,
i = 1, 2, . . . ,n , as the 2n unknowns. The end points of the lower interface
are known to lie at (−α/2, 0) and (α/2, 0) and so these are omitted from the
scheme, leaving 2n− 2 nonlinear equations in 2n− 2 unknowns.

In (25) there is a possible singularity in the integrand as (x,η) → (x0,η0).
Carefully taking the limit in the two integrals as (x,y) → (x0,y0) gives

lim
x→x0

(φ− φ0)[η
′
k(x)Gx −Gy] =

1

2π
(1− γk)[η

′
k(x)]

2, k = 1, 2 . (28)

These values were incorporated into the trapezoidal integration scheme.

A damped Newton’s method solved the system of 2n−2 nonlinear equations.
Thus, an initial guess for the values of η1(xi), i = 2, . . .n − 1 , and η2(xi),
i = 1, 2, . . . ,n , was updated iteratively. Most simulations were performed
with a space step of ∆x = 0.3 and this gave graphical accuracy for the
interfaces and seepage face heights.

5 Results

Simulations were carried out for different inflow rates, µ, with γ1 = 1.5 and
γ1 = 1.1, both with γ2 = 0 (air-water) for several different island lengths
and source locations. For a given value of µ and γ1, there is a corresponding
seepage face height β to which the numerical scheme will converge.

Figure 3 shows interface shapes for the case of an island of length α = 50

where the recharge source is located at (xs,ys) = (0, 0) with γ1 = 1.5 and
γ2 = 0. As the pumping rate µ increases, the height (and depth) of the two
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Figure 3: Typical interface shapes for an island of width α = 50 with µ = 4

(solid), µ = 5 (dash), µ = 6.5 (dots) for density ratios γ1 = 1.5 and γ2 = 0.
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Figure 4: Typical interface shapes for an island of width α = 50 with
µ = 1.65 (solid), µ = 4 (dash), µ = 5.6 (dots) for density ratios γ1 = 1.1
and γ2 = 0.

interfaces increases almost linearly. There is a particular window of pumping
rates that has a stable steady solution. In this case, µ ranges from about
µ = 3.7 up to µ = 6.5.

Figure 4 shows interface shapes for the case of an island of length α = 50

where the recharge source is located at (xs,ys) = (0, 0) and γ1 = 1.1 with
γ2 = 0. Notice that the seepage face is much smaller in this example and
the depth of the lower interface is much greater. This agrees with the results
of Polubarinova-Kochina [7] who used approximate methods to show that
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Figure 5: Variation in seepage face heights with flow rate for an island
of width α = 25, 50, 100 for density ratios γ1 = 1.5 and γ1 = 1.1. The
relationship is clearly linear and almost unaffected by island length.

η1(x) ∝ 1/(1 − γ1). Again, there is a particular window of pumping rates
over which there is a stable steady solution. In this case, µ ranges from about
µ = 1.65 up to µ = 5.6.

There is no obvious physical reason in the solutions that suggests why flow
rates are limited in this way. Stagnation points exist on the interfaces both
above and below the source at all flow values, but on neither surface is there
extreme behaviour as the limits are approached. The cases shown in Figure 4
show a slight concavity of the upper surface as the flow rate increases, but
this does not appear in the case shown in Figure 3. The lower interface seems
to have quite a sharp corner near the ends of the island before levelling off,
and this point may warrant further investigation as a possible cause of the
limiting behaviour.

In both cases, increasing the flow rate increases the height of the seepage
face, albeit slowly. Figure 5 shows this variation for the case α = 25, 50, 100
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for varying flow rates µ with γ1 = 1.5 and γ1 = 1.1. Clearly, the different
density ratios give very different seepage face heights. However, the effect of
the nondimensional island width, α, on the value of the seepage face height, β,
appears to be quite small, and even the recharge rate, µ, has only a small
effect. This is not surprising since the flux through the ends of the island
for a given flow rate is identical, irrespective of the island length. In fact,
there is a very minor increase in seepage face height as the island gets longer.
Moving the recharge point up or down was found to have very little impact
on the shape of the interfaces or the seepage face heights.

6 Concluding remarks

We developed a method to solve for the interfaces of the lens of freshwater
beneath an island. No recharge is allowed through the surface of the lens,
and artificial recharge of water is through a single source. No withdrawal
was included, but the method is adaptable enough to include it. In order to
obtain a steady state, seepage faces are allowed at both ends of the island. In
the work presented here, only one source is allowed and it is located centrally
(in the horizontal direction), giving left-right symmetric surfaces. The height
of the upper interface suggests that for low lying islands the upper interface
would probably break the surface in many cases, and most of the island would
indeed be saturated, as considered by Hocking and Forbes [2].

The work differs from the previous work by allowing a second interface. A
steady, stable lens can be maintained using a single recharge point, and the
resulting seepage face heights are almost totally dominated by the density
ratios between the fluid layers. There are limits on the recharge that will
produce a steady solution. Further work will compare different locations for
the source and also include several withdrawal points to optimise the water
retention.
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