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Piecewise linear approximation of nonlinear
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Abstract

The study of linear ordinary differential equations (odes) is an
important component of the undergraduate engineering curriculum.
However, most of the interesting behaviour of nature is described by
nonlinear odes whose solutions are analytically intractable. We present
a simple method based on the idea that the curve of the nonlinear
terms of the dependent variable can be replaced by an approximate
curve consisting of a set of line segments tangent to the original curve.
This enables us to replace a nonlinear ode with a finite set of linear
inhomogeneous odes for which analytic solutions are possible. We
apply this method to the cooling of a body under the combined effects
of convection and radiation and demonstrate very accurate solutions
with a relatively few number of line segments. Furthermore, we discuss
how a number of key and usually disparate concepts of calculus are
needed to apply this method, including continuity and differentiability,
Taylor polynomials and optimisation.
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1 Introduction

Ordinary differential equations (odes) model phenomena in the world, ranging
from wave motion to heat exchange; hence odes are extremely important to
many scientists and engineers. They are solved using a variety of methods,
some methods giving an exact solution use separation of variables or Laplace
transforms. However, many odes involve non-linear terms and this makes
solving them very difficult.

Modern day mathematical software such as Matlab is able to graphically
plot a solution to non-linear ode. However, such a solution cannot be
manipulated algebraically. Thus there is a need to develop new mathematical
techniques to solve nonlinear odes, even if these techniques only provide
approximate solutions. Perturbation techniques are one such mathematical
method, providing approximate solutions to certain nonlinear odes. However,
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perturbation methods require the existence of a small parameter and yet
many important nonlinear odes do not have a small parameter at all.

We introduce a new approach, one termed a piece-wise linear emulating
function method [1]. The type of nonlinear ode we consider is L(y)+f(y) = 0 ,
with given boundary conditions, where L is a linear differential operator (with
constant coefficients) and f(y) is some function of y.

2 Cooling of an object: exact solution

Heat and temperature are very closely related concepts, and they are often
confused. The result of applying heat to an object is to raise its temperature.
Similarly, as an object cools, its temperature drops as it loses heat to the
surroundings. Here we consider the problem of combined convective-radiative
cooling [2]:

mc
dT

dt
= −hS(T − Ta) − eσS(T

4 − T 4a), (1)

where T(t) is the temperature, m is the mass of the object being heated or
cooled, Ta is the temperature of the air, S is the surface area of the object, h is
the convective heat-transfer coefficient, and c is the specific heat of the object.
We assume that h and c are independent of temperature. The factor e, called
the emissivity, is a number between 0 and 1 that is characteristic of the
material, and σ is the Stefan–Boltzmann constant.

The term on the left of Equation (1) is the rate of change of heat with time t.
If T > Ta then the surface is loosing heat, and if T < Ta the surface is gaining
heat.

The first term on the right is due to convective cooling. It models the transfer
of heat by the mass motion of air (or a fluid) from one region of space to
another. We assume forced convection, that is, there exists a column of slowly
moving air across the surface of the cooling object (a slight breeze) which is
the basis for Newton’s Law of Cooling.
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The second term is due to radiative cooling. Unlike convection which requires
the presence of matter as a medium for the transfer of heat energy, radiation
involves electromagnetic waves. The warmth we receive by a camp fire is
mostly radiant energy, most of the air heated by the fire rises by convection
and does not reach us. The rate at which an object at temperature T radiates
energy is given by the Stefan–Boltzmann equation [3].

We wish to solve Equation (1) with the initial condition T(0) = Ti . To solve
this equation we perform the following change of variables

T ′ =
T

Ti
, T ′

a =
Ta

Ti
, t ′ =

hSt

mc
, ε =

eσT 3i
h

.

Making the above change of variables the differential equation becomes (upon
dropping the dashes)

dT

dt
+ (T − Ta) + ε(T

4 − T 4a) = 0 ,

subject to the initial condition T(0) = 1 . For the sake of exposition, we
further assume that Ta = 0 . The differential equation then simplifies to

dT

dt
+ T + εT 4 = 0 . (2)

This equation is a Bernoullie equation and can be solved exactly:

T 3 =
e−3t

1+ ε− εe−3t
. (3)

This solution has the correct asymptotic behaviour, that is, as t → ∞ ,
T → 0 .

3 Approximate solutions

We begin by writing Equation (2) as T ′+T+εf(T) = 0 where f(T) = T 4. The
aim is to use a linear piece-wise function to emulate f(T) over the interval (0, 1].
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Figure 1 shows a plot of f(T) with two linear functions, namely

fl(T) =

{
0, 0 < T 6 T0 ,

4T − 3, T0 < T 6 1 ,

where T0 is a parameter that is determined by the intersection of the two
straight lines. Here T0 = 0.75 . By replacing f(T) with fl(T) we must solve

dT

dt
+ T + εfl(T) = 0 (4)

over each of the subintervals. This linear ode can in each instance be solved by
separation of variables or by using an integrating factor, the general solution
is

T(t) =

{
3ε
1+4ε

+ Ce−(1+4ε) t, 0 < t 6 t0 ,

Ae−t, t > t0 .

Clearly we have the correct behaviour, as t→∞ , that T → 0 . To solve the
problem we must determine the constants C, A and t0. We find C using the
initial condition, T(0) = 1 ; ensuring continuity of the solutions at T(t0) = T0
determines both A and t0. The steps involved are relatively straight forward
and lead to

C =
1+ ε

1+ 4ε
,

t0 =
1

1+ 4ε
log

[
4(1+ ε)

3

]
,

A =
3

4

[
4(1+ ε)

3

]1/(1+4ε)
.

We extend this approach of using a piece-wise linear function with three
segments to emulate the nonlinear term of the heat equation, as shown in
Figure 2. The three lines, defined over the subintervals (0, T0], (T0, T2], (T2, 1]
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Figure 1: Emulating function with two segments.

with tangents to f(T) at the points 0, T1 and 1, respectively. The equations
for the straight lines are found to be

fl(T) =


0, 0 < T 6 T0 ,

T 31 (4T − 3T1), T0 < T 6 T2 ,

4T − 3, T2 < T 6 1 .

The points T0 and T2 are points of intersection of two lines of consecutive
subintervals. It is also clear from the Figure 2 that the locations of both T0
and T2 depend on T1:

T0 =
3T1

4
and T2 =

3

4

(
1− T 41
1− T 31

)
.
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Once T1 is specified then both T0 and T2 can be determined.

To find the approximate solution we replace f(T) with fl(T) and use the
integrating factor method to find the solution to the equivalent linear first
order, non-homogeneous ode over each of the subintervals. The solutions are

T(t) =


3ε

1+ 4ε
+ C2 e

−(1+4ε) t, 0 6 t < t2 ,

3εT 41
1+ 4εT 31

+ C1 e
−(1+4εT31 ) t, t2 6 t < t0 ,

A0 e
−t, t > t0 ,

where A0, C1, C2, t2 and t0 are all constants that are to be determined. From
the above, the solution for T(t) displays the correct asymptotic behaviour.

The initial condition, T(0) = 1 , helps determine

C2 =
1+ ε

1+ 4ε
,

which is exactly the same as for the case with two segments emulating the
nonlinear term. The remaining four constants are found by requiring that T(t)
and its derivative are continuous at T(t2) = T2 and T(t0) = T0 . Continuity
of T(t) and its derivative at t2 gives rise to two transcendental equations
which when solved give both

t2 =
1

1+ 4ε
log

{
4

3
· (1+ ε)(1− T 31 )

[(1− T 41 ) + 4εT
3
1 (1− T1)]

}
,

C1 =

(
1+ ε

1+ 4εT 31

){
3

4
·
[
(1− T 41 ) + 4εT

3
1 (1− T1)

]
(1+ ε)(1− T 31 )

}4ε(1−T31 )/(1+4ε)
.

Similarly, continuity of T(t) and its derivative at t0 leads to

t0 =
1

1+ 4εT1
log

[
4C1

3
· (1+ 4εT

3
1 )

T1

]
,
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A0 = C1(1+ 4εT
3
1 )

[
3

4C1
· T1

(1+ 4εT 31 )

]4εT31 /(1+4εT31 )
,

both in terms of C1.

4 Comparison with exact solution

Since Equation (2) has the exact solution (3) it makes it possible to assess
the accuracy for the emulating function method with both the two segments
and three segments approximate solution, as well as the perturbation method
(see Appendix A). But first we must get estimates for the single parameter ε.
Recall that ε = eσT 3i /h where σ = 5.67× 10−8 W/(m2K4). The emissivity e
varies between 0 and 1 but for many surfaces it typically has a value of 0.8 [3].
Likewise, the convective heat transfer coefficient h, which is determined
empirically, has a very large range of values, from 2 to 3500W/(m2 K) (and
even higher) [4]. Using these values estimates of ε range from 0.0004 to 0.6 at
Ti = 300K and from 0.002 to 1.5 at Ti = 400K. For comparison we consider
two cases, ε = 0.1 and ε = 1.5 .

Figures 3 and 4 show the difference between the exact and approximate
solution for ε = 0.1 and ε = 1.5 , respectively. For ε = 0.1 , the perturbation
solution is excellent and both the two segment and three segment also provide
very good solutions. Not surprisingly, the three segment solution is better
than the two segment solution. It is possible to further improve the solution
for the three segment case by the appropriate choice of T1, as discussed below.

However, when ε = 1.5 , the perturbation solution is no longer the best
solution. Although the difference between the exact and approximate solutions
has increased, this increase is relatively modest. The relative error is less
than 3%, quite an acceptable result considering that the two and three segment
emulating function are a rather crude approximation to the nonlinear term.

In the three segment case, T1 could be chosen at random, or a specific value
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Figure 3: Comparison of exact solution with perturbation solution and the
emulating function method with two and three segments for ε = 0.1 and
T1 = 0.3 .
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Figure 4: Comparison of exact solution with perturbation solution and the
emulating function method with two and three segments for ε = 1.5 and
T1 = 0.3 .
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could be used instead. However, it may be possible to choose T1 that would
optimise the solution. There are several ways that this could be done, one

way is achieved by choosing T1 to minimise
∫1
0
|h(T ; T1)|dT , where we define

h(T ; T1) = f(T) − fl(T) as the difference function. This minimum is obtained
by requiring

d

dT1

∫ 1
0

|h(T ; T1)|dT = 0 . (5)

By breaking up the integral and integrating over each subinterval∫ 1
0

|h(T ; T1)|dT =

∫ T0
0

T 4 dT +

∫ T2
T0

(T 4 − 4T 31 T + 3T
4
1 )dT +

∫ 1
T2

(T 4 − 4T + 3)dT .

Using a generalised version of Leibniz’s rule (see Appendix B) we get

d

dT1

∫ 1
0

|h(T ; T1)|dT = 2T 51 − 2T
4
1 − 5T

2
1 + 8T1 − 3 . (6)

This fifth order polynomial has one zero in the interval 0 < T1 < 1 , namely
T1 ≈ 0.691 . Figures 5 and 6 show that this value for T1 significantly improves
accuracy.

5 Conclusion

The emulating function method, whereby a nonlinear term in an ode is
approximated by a piecewise linear function consisting of two, three or more
line segments, provides a conceptually simple avenue to solving nonlinear
odes. We demonstrated, in the case of an object cooling under the combined
effects of convection and radiation, the emulating function method provides
accurate algebraic solutions even with as few as three line segments. This is
also true even in the case when there is no small parameter ε.

The method outlined here also has pedagogical value. Students employ several
key concepts from elementary calculus: continuity and differentiability, (first
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Figure 5: Comparison of exact solution with perturbation solution and the
emulating function method with two and three segments for ε = 0.1 and T1 is
optimised.
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Figure 6: Comparison of exact solution with perturbation solution and the
emulating function method with two and three segments for ε = 0.1 and T1 is
optimised.
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order) Taylor polynomials, and optimisation (among others). These concepts
appear as disparate ideas in the traditional undergraduate course in applied
mathematics or engineering and are often seen as mere methods to problems
lacking significance in the real word. We have set semester long projects based
on the emulating function method to solve a variety of first order nonlinear
odes and the experience of our students has been a very positive one.

Finally, piecewise linear functions do have important applications. They are
part of a vast body of research in Approximation Theory. Simple applications
in the undergraduate degree arise in the study of Fourier analysis of a trian-
gular or sawtooth wave function or in the study of linear odes with forcing
terms that are piecewise linear ramp functions. Not so trivial problems arise
in Operations Research where the nonlinear boundary of a feasible solution
space is approximated with a set of piecewise linear constraints.

A Perturbation solution

Assuming that ε is small, we formally write the solution as

T(t) = T (0)(t) + εT (1)(t) + ε2T (2)(t) + · · · .

Substituting this expression into Equation (2) and applying standard regular
perturbation thoery gives the approximate solution

T(t) = e−t +
ε

3
(e−4t − e−t) +

ε2

9
(2e−7t − 4e−4t + 2e−t) + O(ε3).

B Leibniz’s rule

Using Leibniz’s rule

d

dα

∫b
a

f(x,α)dx =

∫b
a

∂

∂α
f(x,α)dx+ f(b,α)

db

dα
− f(a,α)

da

dα
,
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where α is a parameter and the limits of integration a and b may be functions
of α.
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