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Gaussian basis functions for solving differential
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Abstract

We derive approximate numerical solutions for an ordinary differen-
tial equation common in engineering using two different types of basis
functions, polynomial and Gaussian, and a maximum discrepancy error
measure. We compare speed and accuracy of the two solutions. The
basic finding for our example is that while Gaussian basis functions
can be used, the computational effort is greater than that required for
a polynomial basis given the same degree of error.
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1 Introduction

The most common aim of numerical approximation is to approximate a
function that cannot be calculated exactly, in terms of other functions that can,
using the available computing environment. The success of an approximate
solution may be evaluated in terms of the accuracy of the solution and the
amount of computational effort required to produce it.

One approach to numerical solutions of ordinary differential equations (ODES)
is representation as a sum of basis functions. For example, Taylor series use
polynomial functions as basis functions, the coefficients being chosen to match
derivatives at an initial value. This is effectively collocation, within a range
that includes the values of the function and a number of its derivatives. This
is shown by Abramowitz [1], for example.

By the Weierstrass approximation theorem, subsequently extended and simpli-
fied by Stone [10, 11, 12], polynomial functions are dense in the space Cla, b]
of real continuous functions on an interval [a, b], and a transcendental func-
tion on [a, b] can be approximated by the use of polynomials of sufficiently
high order to an arbitrary degree of accuracy. Gaussian functions are also
dense in function space [4] and can be used as basis functions.
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A common difficulty for initial value collocation with Taylor series is that
solutions often become inaccurate for large arguments. This can be avoided
by limiting the maximum value of [t|, expanding the function over narrow sub-
intervals [t — | < T/2 with common length t. However with this approach
the conditions all need to be matched at the boundaries of each sub-interval.
It is necessary in computation to store all boundary values, apply conditions of
continuity and then solve for the required parameters. This is computationally
expensive because of the amount of linear algebra. The division of a domain
into sub-domains leads to spline methods [8] and finite element methods [6].
However, the use of sub-intervals and internal boundary conditions has been
successfully avoided by spectral methods [13].

For f(t) = exp(—t), the truncated Taylor series g(t) = ZLO (—t)l/U with L =
16 has the derivatives gtV (0) = f(0) for 0 < i < 16. This is initial value
collocation. Figure 1 shows g(t) — f(t) over 0 <t < 7. The approximation is
good for 0 < t < 5 but the error grows significantly on 5 <t < 7. Fort > 7,
the errors are even larger. To obviate this problem we use a minimal square
integral method over an entire domain to construct numerical solutions.

A minimal square integral approach can lead to ill-posed problems if the
basis functions are chosen inappropriately. Basis functions of the form t*
have the problem that they become very large in absolute terms as t — co.
This means that they are inappropriate when approximating a function
like exp (—wit) as t — oo, since lim;_,o exp (—wit) = 0 when w; > 0. In
addition, powers t*, while linearly independent, are rather similar in behaviour
for large positive values of k and t. Thus the resulting linear equations form
systems that are nearly singular. They have high condition numbers and
tend to be ill-conditioned. Small round-off errors in the arithmetic lead
to very large errors in the calculated solutions. To avoid this problem, we
consider the use of Gaussian basis functions. These are quasi-orthogonal for
appropriate positions and widths of the Gaussian functions. The resulting
matrices are diagonally dominant and the linear algebra problems ought to
be well conditioned, but we find life is not quite so simple.
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FIGURE 1: Errors in a truncated Taylor series.



2 Design choices for approximate solutions

TABLE 1: Design choices for approximate solutions to ODEs.

C751

Concept

Approach

Approximate solution

Domain of approximation

Method of approximation

Error measurement

Initial conditions

linear weighted sum of basis functions
N—1
g(t) =2 1 —o brdx(t)

one complete domain, of time, t, T; <
t < T,, with no subdivision

minimal square integral over a domain
(not collocation at points) defined by
the conservation laws giving the ODE

maximum absolute deviation, or
discrepancy

enforced using constraints and making
use of the Lagrange multiplier method

In summary, we consider the use of Gaussian basis functions as global basis
functions, using a a minimal square integral for constructing approximate

solutions to ODEs.

2 Design choices for approximate solutions

There are many possible choices that can be made when constructing ap-
proximate solutions. Our general paradigm, depicted in Table 1, serves as
a testing environment for comparing different basis functions. We consider
polynomial functions ¢y (t) = t* and Gaussian (normal) functions

2
dx(t) =N (t, p, 0x%) = ]—exp (—m> .

V2moy?

ZO'k2
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F1GURE 2: Circuit diagram for a first order Butterworth filter.

For the present, we choose a constant variance width (o * = 02) and use
arrays of Gaussian functions with equal spacing

Miet — M =T (1)

We use Gaussian functions rather than Hermite functions, which are Gaussian
functions multiplied by Hermite polynomial functions [3].

3 A simple RC circuit

We consider a problem that has engineering applications and is simple enough
to have a closed form solution but which presents a meaningful challenge to
our numerical methods. Figure 2 shows a standard ladder circuit used to
realise the simplest Butterworth filter. The source impedance is Rs and the
load impedance Ry . The circuit has a single time constant T;, corresponding
to a single corner angular frequency 27ntf; = w; = 1/17. There is one
state variable, the voltage V; across C;. The current I = V;/R[ is not an
independent state variable, since it can be expressed in terms of V;. The
output voltage Vi equals V; and so also is not an independent state variable.

Standard circuit analysis produces the equation of state

dVi(t)
dt

+ w1V, (t) = wsvs(t)v (2)
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where

w ] ! + 1 d w ]

= — | — - an - .

1 C] RS RL ) Rs C]

Equation (2) is a linear first order ODE and is solved readily using an integrat-
ing factor or by Laplace transformation. Treating only impulsive transient

responses (Vi(t) = 0 for t > 0), we specify the initial value for V; as
Vi o = limg_0+ Vi(t). There is a closed form solution

Vi(t) = Vigexp(—wit). (3)
We could evaluate the solution using a reciprocal Taylor series
N Vio
~ L 1 ' .

The issue is whether we can approximate the solution (3) using a weighted
sum of basis functions, and whether more generally we can solve ODEs that
are more complicated than (2) and which may not have closed form solution.

Vi(t)

For simplicity, we consider the corresponding normalised and dimensionless
ODE f'(t) — af(t) = 0, with solution f(t) = foe**. This may be approximated
by various functions g(t) = ZE;O] by dx(t). For comparison with the Taylor
series of Figure 1, we choose o« = —1.

3.1 Global basis functions and least squares

We seek to minimise the square integral

T, 5
H = J wit) (g'(t) — ag(t)) dt

T

where g(t) = ]]:’:_0] brdr(t) and by is real. For a polynomial basis it is
convenient to take w(t) = 1 on the interval [Ty, T,]. For a Gaussian basis
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functions analysis is simplified if the Welghtlng functlon can be expressed in
’]c\(jerm? of basis functions ¢;(t) as w(t Z] 2y, vidi(t), where 0 < 1 < Jo <

In general, for w(t) a linear combination of basis functions, we obtain

aHZ T
ab1 ZJ (dr(t) — oy (t (Zv)d)k )Zbk ¢ (t) — oy (t)) dt

i i=I

We also impose a constraint g(Ty) Zk _o b (T7) = f(T;) to represent the
initial condition. Our least squares problem is a constrained minimisation, so
we use a Lagrange multiplier A to obtain

oH?

= <IKN-1.
ab, Ap(Ty) =0, O0<I<N-I1

The constants by then satisfy

Ao Aoi - Aon—i —Po(Th) bo 0
An—1o Ancig o0 Ancinet —Onaa(T) bt | 0
Go(T) d1(Th) -+ dnaa(Th) 0 A f(Th)

where the coefficients A depend on the choice of basis function.

4 Numerical examples

4.1 Polynomial basis functions

For the polynomial basis function, we have

T 1+k— ]T 1+k—1 T 1+kT +k TzH_k_HT] I+k+1

l+k) 22— 4 .5
s e U wre v i RV (5)

Ak = 2k
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FIGURE 3: A least squares polynomial approximation.

There are some special cases, handled using limits: Ag = 2&? (T, — T;) and
Aot = A1 =20(To —Ty) (& (T, + T;) — 2). The linear equations represented
by (4) can then be solved to obtain polynomial coefficients by.

In Figure 3 f(t) is approximated using a polynomial function g(t), the
polynomial coefficients being chosen to minimize the mean square deviation
H? = ﬂ]z (g’(t) — xg(t))* dt subject to g(T;) = f(T;). As shown in Figure 3,
the maximum absolute deviation on the interval is less than 2 x 1077,

In Figure 4 this is plotted as a function of the number of basis functions. We
obtain almost one additional decade of performance for each basis function
until we reach N = 12 after which the precision is limited by the precision
of the arithmetic. It is possible to show that the precision of the arithmetic
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is the limiting factor here, by running the same computer code, but with
reduced (single precision) arithmetic. It is reasonable to assume that, as
mentioned by Trefethen [13, p.6], precision could be improved by running the
same algorithm in a multiple precision environment, such as LisP, MAPLE or
MAcCSYMA but we have not yet carried out this experiment.

4.2 The use of weighting functions

For polynomial basis functions, the weighting function was effectively a
rectangular window. It is not possible to integrate along the whole real
line without a window because the resulting integral would not converge.
Integrating Gaussian functions over a finite integral is a computationally
expensive operation It seems better to approximate the rectangular window
by a sum w(t Z] 5, Vi ) of Gaussian functions ¢y (t) =N (t, L, sz).
The positlons e and Wldths O'k of the basis functions need to be chosen
to give a good flat window. With equal spacing yj;1 — 1y = T and equal
width o = 12/2 we obtain

N-T
w(t) = TZN (t, b, 0%).

j=0

As illustrated in Figure 5(a) this gives very suitable windows. Use of more
Gaussian functions should provide more accurate approximation, as shown in
Figure 5(b).

The user has a free choice for the relationship between the inter-function
spacing T and the mean square width o of each basis function. A very good
approximation can be obtained when

ol =1/2. (6)

The windowing function can then be written as w(t) = TZ}\J:_O] N (t, 1, 02).
Other functions can be approximated by multiplying these Gaussian window-
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ing function by the required target function as

f(t) ~ Z’tf(pj)N (t, 1, 0‘2) .

This approximation is simple and practical, but not guaranteed to be optimal
in the least squares sense.

4.3 Gaussian basis functions

For the Gaussian basis function,

4 /2
Arg = ) ;[3", (7)

where

(8

| =

1 1 . 1 1 .

for 0K Lk<N—Tand ul 4 =7 (2 +Kk +1—jk—jl—kl).

The derivation of (7) and (8) use properties of products of Gaussian functions
based on completion of the squares of the exponents.

The linear equations represented by (4) are then solved to obtain the coeffi-
cients by, which are chosen to minimize H? = fl}z (g’'(t) — ocg(t))2 dt subject
to the constraint g(T;) = f(T;). The deviation between g(t) and f(t) is shown
in Figure 6. For f(t) = e, the accuracy of the approximation is limited by
the choice of basis functions near t = Ty . Parts of f(t) where rapid change
occurs require more basis functions than some other parts. This limitation
may force us to use basis functions which are not equally spaced. The er-
ror performance of this method, with Gaussian basis functions, is shown in
Figure 4.
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Figure 7(a) shows a plot of the maximum absolute deviation as a function
of the number of basis functions. The approximations for N < 10 are not
particularly accurate, because the exponential function decays rapidly and
this aspect of the target function f(t) cannot easily be approximated by a
few slowly varying Gaussian functions. Curiously, the algorithm does not
converge very rapidly for N > 10. The greatest accuracy is obtained for
N =13, after which accuracy seems limited. The condition numbers of the
underlying equations are shown in Figure 7(b). Large condition numbers
usually occur in cases where supposedly different basis functions are actually
very similar. A contributing factor to this problem is matching the initial
conditions near t = T; . More basis functions may be needed in certain areas,
which works against the idea of using simple arrays of equally spaced Gaussian
basis functions.

One possible approach to providing more basis functions near the initial
condition is to include guard functions slightly outside of the region in which
approximation is made. These are to help with the matching of boundary
conditions, which strongly affects the accuracy of this method. These functions
are still Gaussian and equally spaced with the same properties as the other
basis functions. The difference is that the central positions py lie outside
the range of the approximation. For N < 8 there was only one guard basis
function at each edge of [Ty, T,]. For 9 < N < 12 this was increased to six
basis functions near T;, keeping one guard basis function near T,.

The benefit of more guard basis functions near T; is improved accuracy of the
solution. However, since these functions are very similar in shape in [Tq, T3],
the resulting linear equation scan is very poorly conditioned, as indicated
in Figure 7(b). Thus the use of guard functions is not entirely successful in
smoothly matching the initial conditions.

In Figure 7, the coefficients b are evaluated by inverting a system of linear
equations Ab = c¢. Accuracy is limited by the condition number of order
two k (A) = ||A|]2]|[A7"|l2. This is shown as a function of the number of
basis functions. Equations are well conditioned if the condition numbers are
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close to unity, so there are problems with numerical solution when condition
numbers of order 10" occur. Thus although we may use equally spaced
Gaussian basis functions for special purposes, they are not in general a good
choice for solving ODEs.

5 Summary and prospective developments

We examined the use of global basis functions and mean square measure
of error. The polynomial basis functions performed well and gave superior
accuracy to a Taylor series for N < 12. This limitation could be possibly be
overcome by using multiple precision arithmetic or orthogonal polynomials
rather than simple powers t*. With Gaussian basis functions the approxima-
tions are more laborious and less accurate. Convergence for Gaussian basis
functions cannot be guaranteed by simply increasing N. The Gaussian basis
functions did not give significantly improved accuracy for N > 12. There were
no values of N for which the Gaussian functions outperformed polynomial
basis functions. Apparently simple is best in this case.

The Gaussian technique does not appear to be generally efficient, which will
often rule out its use. However there are niche problems that benefit from
this approach. In particular, a huge literature of applications to quantum
chemistry [7, e.g.]. We have previously studied diffusion in inhomogeneous
materials in the presence of time varying fields [2, e.g.]. We suspect that
Gaussian functions may prove useful for solving diffusion problems of this

type.

Diffusion is often modelled by the Fokker—Planck equation, as shown by
Gardiner [5, 9] for example,

0

2 (D (3] pe (1)) — 2 (D) (1) p (%)) e (t.) =0, (9)

0x
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When D" = 0 and D® is constant, (9) reduces to the diffusion equation

’p  Op
@ r _F _
DSl P _o. (10)

This may be solved using Gaussian probability density functions
1 —x?
— 11
e (). (1)

o’ =2DWt (12)

1% (t,X) =

where the variance

is a linear function of time. Direct substitution gives

’p op 1 X\ 2
-r _*F _ _(Z
N THT: (1 (5) ) pt.x),

which verifies that (11) is a solution to (10).

The solution to these equations has an interesting history and many applica-
tions. Fourier developed this solution to the diffusion equation in connection
with heat flow. Einstein later applied Fourier’s solution to Brownian motion.
Fourier’s solution is also relevant to propagation of signals in RC transmission
lines.

We plan to generate approximate solutions the diffusion equation (10) using
arrays of fixed position Gaussian functions, first approximating the initial
conditions using sums of Gaussian functions and then determining the effect
of diffusion over a short time interval using (11) and (12). However, to
simulate the effect of a second time step, it becomes necessary to readjust
the widths o of the Gaussian functions to bring them into proportion with
the sampling intervals, that is, satisfying (6). Without this adjustment, the
basis functions may cease to be representative of the possible solutions. The
resulting equations may become poorly conditioned leading to inaccurate
solutions. If we simulate (9) the sample basis function will change variance
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and position. The requirement to reassert (1) and (6) becomes even more
pressing.

A resolution would be to reconvert the function represented by a set of
unequally spaced Gaussian functions of unequal variance to an equivalent
function represented by equally spaced Gaussian functions of equal variance.
The algorithm would take the following form.

e Initialise the representation of the initial conditions, satisfying both
(1) and (6).

e Repeat the following steps for the required length of time
1. Take the solution forward one time step using (11) and (12).

2. Reinitialize the representation of the present conditions to satisfy
(1) and (6).
We expect that the time evolution step will be almost trivial. The major

numerical cost will be in re-initialisation of the solution.

We hope that Gaussian basis functions will prove useful for simulating diffusion
problems, especially when fields are time varying and the media inhomoge-
neous. Using Gaussian functions to solve ODEs is intended as a first step
towards solving parabolic PDEs associated with diffusion.
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