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Simulation of transonic flows using quad-core
OpenMP Euler, flux modified transonic small
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Abstract

This article investigates what performance can be achieved when
executing an aerodynamic code on a quad-core based personal com-
puter with an OpenMP compiler in a Windows environment. Eu-
ler equations are solved in two dimensions for simplicity, to predict
flow field around an aerofoil on an o-type boundary fitted structured
grid. The grid is generated by solving a system of Poisson’s equa-
tions utilising an efficient method of false transients, coupled with an
approximate factorisation technique and variable time steps cycling
process. Comparison between the OpenMP Euler, flux modified tran-
sonic small disturbance and Fluent results for transonic flow fields,
with shock waves, around a naca0012 aerofoil is presented.
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1 Introduction

Inadequate and unaffordable computer power has plagued computational
fluid dynamics (cfd) research and applications since its inception. Conse-
quently, the claim made by Harvard Lomax [12] in the late 1960’s that cfd
would replace wind tunnel experiments has not yet materialised. Instead,
problems that required investigation were simplified (either mathematically
or physically), so that reasonable solutions were obtained within an accept-
able turnaround time with present computing platforms. Often, the only way
to obtain results in a timely manner, for demanding high level aerodynamics
solvers based on Euler or Navier–Stokes equations, required employing a very
expensive supercomputer or cluster computer system. As such, researchers
predominantly focused on researching large scale computations and associ-
ated issues using such systems [1, 5]. Recent developments offer a tantalising
insight into new computation accelerating technologies for ordinary desktop
personal computers (pcs). These include using relatively inexpensive high-
end graphics card based solutions with amd/ati’s Close-To-The-Metal and
Nvidia’s Compute Unified Device Architecture, which offer performance of
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up to 500Gflops per card for single precision calculations.

Here we ask what sort of performance can a regular pc offer for less de-
manding cfd applications, particularly given that multiple processing cores
are now be accommodated in a single-socket rather than resorting to the
multi-socket architecture of the past? To answer this question, a finite dif-
ference based scheme, implementing the Van Leer flux blending [14], was
developed to solve the two dimensional Euler equations, in double precision
accuracy, on an o-type structured grid system. The grid generation code
implements an efficient method of false transients, coupled with an approx-
imate factorisation (af) technique and a variable time step cycling process
with repeated end points. At closure, comparison between the computed
results obtained from the OpenMP Euler code, flux modified transonic small
disturbance (tsd) code and commercial cfd code Fluent, for transonic flow
fields around a naca 0012 aerofoil is presented.

2 Numerical solution procedure

2.1 Flux blending technique based Euler solver

The first step in solving the Euler equations involves establishing a smooth
boundary fitted grid around a body of interest, which in this case is an
aerofoil. The cartesian coordinates in the physical domain, r = (x, z), are
mapped to general curvilinear coordinates in the computational domain, ϑ =
(ξ, ζ), via a relation ϑ = r (quantities in boldface represent vectors). The
mapping is constructed by specifying desired grid points on the boundaries,
with the interior point distribution determined through the solution of a
system of Poisson’s equations [10]. The grid equations are solved by the
method of false transients coupled with an af technique [9] and a variable
time step cycling process [8]. The latter process is incorporated to further
enhance the convergence rate of the grid generation process, and overall the
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process is efficient and robust.

The adiabatic flow field around the aerofoil, without body forces, is assumed
to be governed by the unsteady Euler equations, written in a strong con-
servation law form with flux variables as the dependent variables [4]. The
equations were non-dimensionalised with free stream fluid density and speed,
and aerofoil chord length as the characteristic length scale, yielding
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Here Qτ represents ∂Q/∂τ , ρ is the fluid density, (u,w) are the cartesian
fluid velocity components in the x- and z-direction, respectively, et is the
total energy per unit mass and p is the fluid pressure.

The flux vectors are split according to Ê = Ê
+
+Ê

−
and Ĝ = Ĝ

+
+Ĝ

−
. In the

finite difference scheme, forward flux terms (plus superscript) are discretised
using a backward difference rule, and a forward difference rule for backward
flux terms (minus). When compared to centred schemes this brings some
advantages, such as superior dissipation and dispersive properties, and up to
twice the stability bound [13]. Van Leer flux blending [14] is employed to
solve the equation, since it overcomes spurious oscillations (generated by the
Steger and Warming flux splitting [6] technique) around the sonic transition
regions and stagnation points.

Equation (1) is hyperbolic in time, and for steady flow simulations the so-
lution process is marched in time until a steady state solution is obtained.
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For simplicity, and since explicit schemes are well suited to parallel execu-
tion, a second order accurate (in both space and time) flux splitting version
of MacCormack’s scheme [4] is utilised. MacCormack’s scheme involves a
predictor-corrector sequence at each time level. In the predictor step, the
time derivative is approximated by a first order forward time difference rule
while all spatial derivatives are approximated by first order backward and
forward difference rules as appropriate. The corrector step is more involved,
and was presented by Steger and Warming [13]. The MacCormack scheme
has been shown to be conditionally stable [4, 13] provided that the time step
is not too large. A time step in the order of a tenth of millisecond seemed to
provide a numerically stable solution with the boundary conditions used.

2.2 Flux modified transonic small disturbance solver

In the tsd code, the isentropic and inviscid flow over a thin aerofoil is as-
sumed to be governed by the general frequency unsteady tsd equation [9],

∂

∂t

[
M2∞φt + 2M2∞φx

]
+
∂

∂x

[
1
2
M2∞(γ+ 1)W2

]
−
∂

∂z
φz = 0 , (3)

where

W =
1−M2∞

M2∞ (γ+ 1)
−
∂φ

∂x
, (4)

φ(x, z, t) is the reduced potential, M∞ is the free stream Mach number and
γ is the ratio of specific heats (about 1.4 for ambient air). Equation (3) is
locally of elliptic/hyperbolic type representing local subsonic/supersonic flow
when W is positive/negative, and its solution contains discontinuous jumps
that approximate shock waves. Nonreflecting far field boundary conditions
derived from the theory of wave propagation are imposed, and serve to sim-
ulate the disturbances that propagate outward from the aerofoil to infinity.
This allows the solution to propagate through the artificial computational
boundaries as if there are no boundaries present. This allows the far field
boundaries to be moved closer to the aerofoil, and offer greater freedom in
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tradeoffs among grid density, accuracy and computational cost. Any shock
wave that exists in the flow field must satisfy the shock jump condition de-
rived from (3).

Rotational effects become significant when strong shock waves exist in the
flow field, since vorticity is generated due to the entropy changes along the
shock. Such effects are excluded in the conventional tsd theory [3, 8], because
of the irrotationality assumption necessary for the existence of a velocity
potential. Hence, inclusion of the shock generated entropy and vorticity
effects is necessary when modelling such strong shock waves. To include the
entropy effect, the streamwise flux in (3) is modified to

W =
ψ4 − 1

2ψ
−
ψ
(
1+ψ2

)
φx

1+ψ2 + φx
and ψ4 =

2+ (γ− 1)M2∞
(γ+ 1)M2∞ . (5)

To include vorticity effects, the velocity vector is treated as a sum of potential
and rotational components, and the rotational component assumed to exist
only in the region downstream of the shock wave. Since entropy is constant
for steady flow, and imposing that the shock curvature is negligibly small, the
fluid speed of the grid points behind the shock wave is modified to include an
entropy jump, experienced by a fluid particle as it passes through the shock.

The numerical solution procedure involves applying the method of false tran-
sients coupled with an af technique [3, 8, 9] to solve for the reduced potential.
In the method of false transients for steady state solution, the time deriva-
tive in Equation (3) is replaced by an artificial time derivative written in a
Padé form, which is approximated by a general time difference rule in the fi-
nite difference scheme. The spatial terms of Equation (3) are approximately
factorised, and the time step sizes are cycled in a geometric manner with
repeated end points to enhance the convergence rate of the scheme. The
first ξ-derivative and all ζ-derivatives are differenced using standard second
order accurate upwind and central differencing, respectively, while second
order accurate Engquist–Osher type-dependent differencing [2] is applied to
the second ξ-derivative. As the flow changes from subsonic to supersonic,
Engquist–Osher operators smoothly change from central differencing (elliptic
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region) to upwind differencing (hyperbolic region). This ensures a smooth
transition from subsonic to supersonic flow. Thence, entropy violating de-
compression shocks will not develop. As the flow changes from supersonic
to subsonic, Engquist–Osher operators change to an appropriate shock point
operator [11], implementing a shock capturing technique.

3 Simulation examples

In terms of software, two options exist for parallel programming, notably
Open Multi-Processing (OpenMP) and message passing solutions such as the
Message Passing Interface (mpi). The latter is used with cluster computer
systems, where data is transferred between nodes. While it can be used
for multiple processors on a single node, the programming effort required is
much higher than for OpenMP, which is designed to share memory on an
individual node. For this reason, OpenMP is used here.

In the present Euler code, the compiler directive,

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(Qhat,...)

marked the start of the parallel section inside the iteration loop. The thread
numbers were limited with !$OMP NUM_THREADS(). The directives !$OMP DO

and !$OMP END DO were placed at the start and end of each of the predictor
and corrector loop blocks, where intensive computations took place to cal-
culate the flow variables for each grid point at each time level. The parallel
section closed after the second loop with the !$OMP END PARALLEL directive.

For investigation purposes, flow fields around a naca 0012 aerofoil were com-
puted on an o-type structured grid with coarse (101 streamwise points by
50 radial points), medium (201× 101) and fine (401× 201) meshes. The left
plot of Figure 1 presents the comparison of the present OpenMP Euler re-
sult with the well known agard’s (Advisory Group for Aerospace Research
and Development) benchmark result by Lock [7] for the aerofoil at two de-
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Figure 1: (left) Steady pressure coefficient distributions; (right) Computing
speedups of the OpenMP Euler code for different thread modes.

gree angle of attack and at free stream Mach number of 0.63 (Reynolds
number of 14.67 million). The Euler computation was performed on a per-
sonal computer consisting of an Intel 2.4 GHz Core 2 Quad Q6600 processor
with 8Mb L2 cache and 1, 066MHz front side bus, Gigabyte motherboard
with an Intel G965 chipset and Corsair 2x1 Gb ddr2 800MHz dual-channel
memory, running Microsoft Windows xp Professional Service Pack 2. The
pressure distributions for both the upperside and lowerside of the aerofoil are
in excellent agreement. Adopting the serial code computation time as the
benchmark, the performance results illustrated by the right plot of Figure 1
show that a substantial reduction in execution time can be achieved with
a multicore pc. However, with only one thread the speedup is reduced by
2.5% to 3.3% due to the overhead associated with enabling OpenMP.

As the number of threads increased, the speedup associated with the quad-
core processor varied approximately linearly with the thread number. Fur-
thermore, a larger speedup is observed with the coarse and medium grids
when compared to the fine grid. In regards to the coarse and medium grid
results, a maximum speedup of 350% (which is 12.5% below the ideal value
of 400%, most likely due to the necessary communication overheads) was
achieved using four threads. The disparity between the two smaller grids
is attributed to the OpenMP overhead to computation ratio per iteration
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Figure 2: Steady pressure distributions: (left) upperside; (right) lowerside.

being higher for the coarse grid than for the medium grid. In other words,
each outer loop iteration performs computations for all of the grid points in
the streamwise direction along a given radial level. Since the medium grid
contains more nodes than the coarse grid, the computation work done per
iteration is greater for the medium grid while the OpenMP overhead is the
same for each grids. Therefore, the proportion of time per iterations pent by
OpenMP to distribute the workload is larger for the coarse grid compared
to the medium grid, and this results in a slight reduction in the speedup
for the coarse grid. As for the fine grid, the speedup rose to a maximum
of 256%. This significant reduction in performance, compared to the coarser
grids, is suspected to be caused by inadequate front side bus bandwidth. The
coarse and medium grids occupied approximately 1.5 and 6.1Mb of mem-
ory, respectively, which the faster cache memory could accommodate. Thus,
the computations were limited by processor speed, whereas the fine grid re-
quired about 24Mb, which could only fit in the slower main memory whose
accessibility restricted the computation speed. The results for the smaller
grids demonstrate that the new multicore architecture offers similar scaling
performance to older shared memory multiprocessor architecture [5].
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The steady state pressure distributions computed by the OpenMP Euler
code, flux modifed tsd code and those obtained from the commercial cfd
package Fluent, for a naca 0012 aerofoil at 1.25 degree angle of attack and
at free stream Mach number of 0.8, are compared in Figure 2. Fluent is a
general purpose cfd code based on the finite volume method on a collocated
grid. The present code employed four threads and medium grid for the com-
putation, and the solution was obtained within an acceptable turnaround
times (about ten minutes) on a descent desktop pc. While the tsd code
employed an algebraic grid system with 18, 000 grid points, and Fluent em-
ployed a structured c-type grid system with 80, 000 grid points, generated
using a commercial meshing package gambit. gambit is a geometric mod-
elling and grid generation tool to automatically mesh surfaces and volumes
while allowing the user to control the mesh through the use of sizing func-
tions and boundary layer meshing. All grids involved clustering of grid lines
toward the aerofoil in region adjacent to the aerofoil. All codes generated a
shock wave as shown in Figure 2, which is represented by the discontinuous
jump in the pressure distribution. The shock profile spreads over a maximum
of three grid points (two computational cells) leading to an excellent agree-
ment in terms of shock position and strength, except for the lowerside where
the tsd code generated a slightly weaker shock. This is acceptable, since
the tsd code solved the general frequency tsd equation, which is derived
on the assumption of potential flow, generates a weaker shock wave. Even
though the streamwise flux of the tsd equation was modified to include the
shock generated entropy and vorticity effects, these modifications overall do
not represent the exact effects that would otherwise produced by the Euler
solution. Figure 3 presents a contour plot of steady pressure cofficient gen-
erated by the present Euler code, clearly showing the formation of the shock
waves. Since the present code solves a system of flow equations, it requires
more memory during computation as compared to the tsd solver (where it
solves only a single potential equation), but it is not restricted to thin body
application as it is not based on the potential theory.

As computational power increases, more versatile but less computationally
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Figure 3: Contour plot of steady pressure coefficient.

efficient codes will be adopted. For example, with the processing speed of a
quad-core pc, an Euler solver could replace solvers that solve the subsonic
and supersonic small disturbance equations, full potential equation and gen-
eral frequency tsd equation, which are limited to the potential flow regime,
supercritical flows with weak embedded shock waves, thin aerofoils (except
for the full potential equation) and small angle of attacks.

4 Concluding remarks

The scaling performance of an Intel quad-core processor using OpenMP to
accelerate a two dimensional cfd problem on a pc was studied. With coarse
grids, an excellent speedup of 350% was achieved, while for fine grids the
speedup was 256%. In future work, processors with larger core numbers,
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as well as graphics card based solutions, may be investigated to establish
their associated speedups in newer high performance pcs. Further reduction
in turnaround times of the present code will make it attractive in aeroe-
lasticity analysis work (computational aeroelasticity), where a large number
of simulations need to be executed; improving the accuracy of aerodynamic
computations (as compared with the modified tsd) in the preliminary design
of aircraft wings; or may even be used as an educational tool for students
studying cfd, computational aerodynamics or computational mathematics.

References

[1] Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R.,
Dagum, L., Fatoohi, R., Fineberg, S., Frederickson, P., Lasinski, T.,
Schreiber, R., Simon, H., Venkatakrishnan, V., and Weeratunga, S.,
The NAS Parallel Benchmarks, Contractor Report 203186, NASA,
USA, 1994. C156

[2] Engquist, B., and Osher, S., Stable and Entropy Satisfying
Approximations for Transonic Flow Calculations, Mathematics of
Computation, 34, 149, January 1980, pp. 45–75. C160

[3] Gear, J., Ly, E., and Phillips, N. J. T., A Time Marching,
Type-Dependent, Finite Difference Algorithm for the Modified
Transonic Small Disturbance Equation, Proceedings of the 21st
Congress of the International Council of the Aeronautical Sciences
(ICAS98), ICAS and AIAA, Melbourne, Australia, 1998, Paper
A98-31513. C160

[4] Hirsch, C., Numerical Computation of Internal and External Flows:
Computational Methods for Inviscid and Viscous Flows, Volume 2,
John Wiley and Sons, Great Britain, 1992. C158, C159



References C167

[5] Jin, H., Frumkin, M., and Yan, J., The OpenMP Implementation of
NAS Parallel Benchmarks and its Performance, Technical Report
NAS-99-011, NASA, Moffett Field, USA, 1999. C156, C163

[6] Liu, Y., and Vinokur, M., Nonequilibrium Flow Computations 1: An
Analysis of Numerical Formulations of Conservation Laws, Contractor
Report 177489, NASA, California, USA, 1988. C158

[7] Lock, R. C., Test Cases for Numerical Methods in Two-Dimensional
Transonic Flows, Report Number 575, AGARD, 1970. C161

[8] Ly, E., Improved Approximate Factorisation Algorithm for the Steady
Subsonic and Transonic Flow over an Aircraft Wing, Proceedings of the
21st Congress of the International Council of the Aeronautical Sciences
(ICAS98), ICAS and AIAA, Melbourne, Australia, 1998, Paper
Number A98-31699. C157, C160

[9] Ly, E., and Nakamichi, J., Time-Linearised Transonic Computations
Including Entropy, Vorticity and Shock Wave Motion Effects, The
Aeronautical Journal, November 2003, pp. 687–695. C157, C159, C160

[10] Ly, E., and Norrison, D., Automatic Elliptic Grid Generation by an
Approximate Factorisation Algorithm, ANZIAM Journal, 48
(CTAC2006), pp. C188–C202, July 2007. C157, C158

[11] Murman, E., Analysis of Embedded Shock Waves Calculated by
Relaxation Methods, AIAA Journal, 12, 5, May 1974, pp. 626–633.
C161

[12] Pulliam, T., Kutler, P., and Rossow, V., Harvard Lomax: His Quiet
Legacy to Computational Fluid Dynamics, 14th AIAA Computational
Fluid Dynamics Conference, Norfolk, VA, June 1999. C156

[13] Steger, J.L., and Warming, R. F., Flux Vector Splitting of the Inviscid
Gasdynamic Equations with Application to Finite Difference Methods,
Technical Memorandum TM-78605, NASA, California, USA, 1979.
C158, C159



References C168

[14] Van Leer, B., Flux-Vector Splitting for the Euler Equations,
Proceedings of the 8th International Conference on Numerical Methods
in Fluid Dynamics, Aachen, West Germany, 1982. C157, C158

Author addresses

1. E. Ly, School of Mathematical and Geospatial Sciences (smgs),
College of Science, Engineering and Health (seh), rmit University,
Melbourne, Victoria 3001, Australia.
mailto:eddie.ly@rmit.edu.au

2. D. Norrison, School of Mathematical and Geospatial Sciences
(smgs), College of Science, Engineering and Health (seh), rmit
University, Melbourne, Victoria 3001, Australia.

3. A. R. Barrett, School of Mathematical and Geospatial Sciences
(smgs), College of Science, Engineering and Health (seh), rmit
University, Melbourne, Victoria 3001, Australia.

mailto:eddie.ly@rmit.edu.au

	Introduction
	Numerical solution procedure
	Flux blending technique based Euler solver
	Flux modified transonic small disturbance solver

	Simulation examples
	Concluding remarks
	References

