
ANZIAM J. 51 (EMAC2009) pp.C347–C359, 2010 C347

Binary versus real coding for genetic
algorithms: A false dichotomy?

J. Gaffney1 D. A. Green2 C. E. M. Pearce3

(Received 24 December 2009; revised 25 May 2010)

Abstract

The usefulness of the genetic algorithm (ga) as judged by numer-
ous applications in engineering and other contexts cannot be ques-
tioned. However, to make the application successful, often consider-
able effort is needed to customise the ga to suit the problem or class of
problems under consideration. Perhaps the most basic decision which
the designer of a ga makes, is whether to use binary or real coding.
If the variable of the parameter space of an optimisation problem is
continuous, a real coded ga is possibly indicated. Real numbers have
a floating-point representation on a computer and the decision space
is always discretised; it is not immediately evident that real coding
should be the preferred method for encoding this particular problem.
We re-visit this, and other decisions, which ga designers need to make.
We present simulations on a standard test function, which show the
result that no one ga performs best on every test problem. Perhaps
the initial choice to code a problem using a real or binary coding is
a false dichotomy. What counts are the algorithms for implementing

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2776

gives this article, c© Austral. Mathematical Soc. 2010. Published June 22, 2010. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2776


Contents C348

the genetic operators and these algorithms are a consequence of the
coding.

Contents

1 Introduction C348

2 Genetic algorithms: overview C349

3 Implementing a genetic algorithm C349

4 Algorithms for genetic operators C351

5 Simulation examples C352

6 Concluding remarks C354

References C358

1 Introduction

There are many survey articles describing the application of gas in engi-
neering contexts [1]. This article discusses some of the design considerations
involved in implementing a ga to solve a particular problem. We need to
formulate the problem, code the solutions and develop algorithms to repre-
sent the genetic operators. Our animations of the simulations of our toy ga
show how a ga works in simple settings, see Figures 2–4.

The question of whether to use a binary or real encoding of a ga can be con-
tentious. The traditional ga uses a binary encoding [2]; however, in many
applications real encoding is used [3]. Various arguments are given as to



2 Genetic algorithms: overview C349

whether a binary or real encoding should be used; it is not always imme-
diately evident which encoding method should be adopted. It appears that
the discretisation of the parameter space plays a role in the computational
efficiency of the ga.

2 Genetic algorithms: overview

The ga is a random search technique for finding good solutions [4]. Genetic
algorithms are loosely based on the evolution of biological systems. An objec-
tive function is identified to quantify the fitness of candidate solutions and
the candidate solutions are encoded by binary strings or by finite decimal
representations of real numbers.

For a traditional ga, a population of N candidate solutions is chosen initially
from the search space of encoded solutions and the fitness of each string is
evaluated. A ‘mating pool’ is selected from this population of candidate
solutions. The genetic operators crossover and mutation act on the mating
pool to give the next set of candidate solutions for the next iteration.

A non-standard elitist operator is sometimes also applied after selection,
crossover and mutation.

3 Implementing a genetic algorithm

The first step taken to implement a ga is to determine how the ‘fitness’ of
solutions is to be calculated and, for engineering design problems, this can be
a considerable challenge. However, the situation for a function optimisation
problem is straightforward; use the value of the function. Next, a method
for encoding the solutions is chosen. These steps are not independent and
it is increasingly the case that real coding is recommended for optimisation
problems where the parameter space is continuous.



3 Implementing a genetic algorithm C350

Table 1: Example three bit binary code comparison.
Decimal Gray code Std Binary code
0 000 000

1 001 001

2 011 010

3 010 011

4 110 100

5 111 101

6 101 110

7 100 111

We consider the simple case of a one variable function optimisation prob-
lem and how solutions to this problem might be coded. Suppose that the
parameter space is [0,M]. To implement a ga we discretise [0,M]. Coding
mechanisms give rise to equally spaced possible decisions. We define the grid
spacing ∆ of a coding to be the difference between two consecutive coded de-
cisions. For a binary code of fixed length l, the gridspacing ∆ =M/(2l− 1).
In using a binary code we determine how many bits we should use in the
binary string to give a grid spacing, which is fine enough. For real coding the
precision is given by the fixed decimal point representation of real numbers
on a computer, where for example ∆ = 0.0000000001 for a ten decimal point
representation.

The binary code, known as a Gray code (reflected binary) after Frank Gray,
is a binary numeral system where two successive values differ in only one bit.
Table 1 gives the representation for each of the codes for a three bit binary
string

The computational efficiency of a ga is an aspect of the choice of an encoding.
We do not explore this question in this article; however, we note the interplay
of the size of the parameter space and the representation of the real or binary
numbers in determining computational efficiency.



4 Algorithms for genetic operators C351

4 Algorithms for genetic operators

We briefly discuss the algorithms (selection, crossover, mutation and elitist
selection) we used in our simulations. We used both binary and real coding.

Selection (of the ‘mating pool’) The algorithm generates a new population
of candidates from the current candidates by probabilistically selecting
higher ranked candidates according to ‘fitness’.

Crossover The algorithm exchanges the last k-bits between pairs of solu-
tions in the mating pool according to some probability pcross to produce
two candidate solutions for the next iteration, if the solutions are binary
coded. If real coding is used, the algorithm uses a convex combination
of the two candidates in the mating pool according to some probabil-
ity pcross to produce two new candidate solutions for the next iteration.

Mutation With binary coding, the algorithm acts on candidate solutions
generated by flipping bit-values according to some probability value pmut.
Alternatively, the algorithm acts on candidate solutions, which are real
coded by manipulating the value of the candidates as follows: for each
value place that may be held by a candidate solution, we add the
value rand([−5, 5]) at that value place to the actual candidate solu-
tion with probability pmut, where rand([−5, 5]) is a random integer
in [−5, 5]. This is to cover a range of mutations ‘about’ the current
candidate solution consistent with the place value separation in the
decimal system. The final result of mutation is only accepted if it is a
feasible candidate solution.

Elitist selection This algorithm is sometimes applied to ensure that the
new solutions generated by Crossover and Mutation are only accepted
for the next iteration if they are no worse than the two solutions used
to generate them.



5 Simulation examples C352

5 Simulation examples

We simulated the minimisation of Ackley’s function, one of the common
benchmarking functions given by Macnish [5], using a Gray coded and a real
coded ga (in two dimensions for display purposes). Ackley’s function is

f(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2i

− exp

[
1

n

n∑
i=1

cos (2πxi)

]
+ 20+ e ,

which over the domain (−6, 6) in R2 is seen in Figure 1. Although not quan-
titatively comparable, the results demonstrate similar qualitative behaviour
when the value of the mutation probability pmut is increased from 0.03 to 0.6.
The sample paths displayed are typical, but are still just sample paths and
will vary due to initial starting positions and also due to the stochastic nature
of the algorithms.

For example, with pmut = 0.03, both the real coded and the Gray coded simu-
lations find the minimum to within ten decimal places under their respective
grid spacings. When pmut is increased, in all cases the outcome becomes pro-
gressively worse, with the real coded algorithm seemingly performing better
at least with these settings on this problem. This essentially highlights the
situation that whatever algorithms you employ, they must be tailored to the
particular application.

A 37-bit Gray binary code and a ten decimal place real code have been used
for comparison. This allows for a comparison in some sense as they both
have the potential to realise a zero to ten decimal places. That is, the grid
spacing for the Gray code is

6− (−6)

237 − 1
= 8.7311× 10−11 ,

whereas that for the real code is 10−10. The crossover probability pcross = 0.6
in all simulations.



5 Simulation examples C353

Figure 1: Ackley’s function.



6 Concluding remarks C354

Thirty candidate solutions are used and animations of the actual moves (that
is, where the solutions actually change) of the first two of the candidate
solutions are given overlayed onto a contour map of Ackley’s function, which
is being minimised. The minimum is located in the centre of the symmetric
contour map, in the ‘cooler’ region (dark blue). Animations of Figures 2,
3 and 4 (corresponding to mutation probabilities pmut = 0.03, 0.3 and 0.6
respectively) are for the real coded strings. These animations must be viewed
in an appropriate pdf viewer to use the animation control buttons beneath
the plot. Each simulation runs for 10, 000 iterations.

Coordinates (where given in the captions) are only reported to four significant
figures in the comparison between the solutions observed for the real coded
and Gray coded simulations.

6 Concluding remarks

gas perform well in engineering applications. However, significant effort may
be involved in formulating the problem. The question of whether to code
solutions using binary strings or floating point numbers has been contentious
in the past. However, this choice is only the beginning of many choices that
a ga designer needs to make. Gridspacing (the distance between consecutive
numbers) is always an issue.

Our discussion of the algorithms we used for the genetic operators gives
an overview of what is needed to implement a ga. The animations of our
simulations illustrate how our toy ga performs on a standard benchmark
problem.

To make a ga perform well in a complicated engineering application is a
complex exercise involving significant questions of initial design and consid-
erable experimentation to determine how to best make the design work. This
remains the case irrespective of the method of coding.



6 Concluding remarks C355

Figure 2: animation with pmut = 0.03 . Real code: found coordinates of
minimum after 88 moves within 178 iterations. Gray code: found coordi-
nates of minimum after 136 moves within 2326 iterations. At the time of
writing one appears to have to use Adobe Acrobat to view these animations.
However, Figure 4 is available as as mpg file at http://anziamj.austms.

org.au/ojs/index.php/ANZIAMJ/editor/downloadFile/2776/9021

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/editor/downloadFile/2776/9021
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/editor/downloadFile/2776/9021


6 Concluding remarks C356

Figure 3: animation with pmut = 0.3 . Real code: Candidate solution
(not minimum) of (2.28,−787.482) × 10−7 after 38 moves within 7037 it-
erations. Gray code: Candidate solution (not minimum) of (0.0002, 0.0088)
after 28 moves within 8973 iterations.



6 Concluding remarks C357

Figure 4: animation with pmut = 0.6 . Real code: Candidate solution (not
minimum) of (−7.4969, 9.0371)×10−4 after 27 moves within 9747 iterations.
Gray code: Candidate solution (not minimum) of (0.1064,−0.0985) after
18 moves within 9051 iterations.



References C358

Thanks to Tony.

References

[1] D. Rani and M. M. Moreira. Simulation–optimization modeling: A
survey and potential application in reservoir systems operation. Water
Resources Management. Springer Netherlands, 2009.
http://www.springerlink.com/content/p61p535r2277r852/ C348

[2] John H. Holland. Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control and artificial
intelligence. Ann Arbor: University Michigan Press, 1975.
http://mitpress.mit.edu/catalog/author/default.asp?aid=3235

C348

[3] Z. Michalewicz. Genetic algorithms + data structures = evolution
programs. 3rd edition, New York: Springer–Verlag.
http://www.springer.com/computer/ai/book/978-3-540-60676-5

C348

[4] D. Fogel. Evolutionary computation: toward a new philosophy of
machine intelligence. 3 rd edition, IEEE Press, 2006.
http://ebooks.ebookmall.com/ebook/232338-ebook.htm C349

[5] C. Macnish. Towards unbiased benchmarking of evolutionary and
hybrid algorithms for real-valued optimisation. Connection Science,
19:4, 2007, 361–385.
http://www.springerlink.com/content/2446104674981574/ C352

http://www.springerlink.com/content/p61p535r2277r852/
http://mitpress.mit.edu/catalog/author/default.asp?aid=3235
http://www.springer.com/computer/ai/book/978-3-540-60676-5
http://ebooks.ebookmall.com/ebook/232338-ebook.htm
http://www.springerlink.com/content/2446104674981574/


References C359

Author addresses

1. J. Gaffney, School of Mathematical Sciences, University of Adelaide,
Australia.
mailto:janice.gaffney@adelaide.edu.au

2. D. A. Green, School of Mathematical Sciences, University of
Adelaide, Australia.

3. C. E. M. Pearce, School of Mathematical Sciences, University of
Adelaide, Australia.

mailto:janice.gaffney@adelaide.edu.au

	Introduction
	Genetic algorithms: overview
	Implementing a genetic algorithm
	Algorithms for genetic operators 
	Simulation examples
	Concluding remarks
	References

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	anm0: 
	btn@0@EndLeft: 
	btn@0@StepLeft: 
	btn@0@PlayPauseLeft: 
	btn@0@PlayPauseRight: 
	btn@0@StepRight: 
	btn@0@EndRight: 
	btn@0@Minus: 
	btn@0@Reset: 
	btn@0@Plus: 
	1.0: 
	1.1: 
	1.2: 
	1.3: 
	1.4: 
	1.5: 
	1.6: 
	1.7: 
	1.8: 
	1.9: 
	1.10: 
	1.11: 
	1.12: 
	1.13: 
	1.14: 
	1.15: 
	1.16: 
	1.17: 
	1.18: 
	1.19: 
	1.20: 
	1.21: 
	1.22: 
	1.23: 
	1.24: 
	1.25: 
	1.26: 
	1.27: 
	1.28: 
	1.29: 
	1.30: 
	1.31: 
	1.32: 
	1.33: 
	1.34: 
	1.35: 
	1.36: 
	1.37: 
	anm1: 
	btn@1@EndLeft: 
	btn@1@StepLeft: 
	btn@1@PlayPauseLeft: 
	btn@1@PlayPauseRight: 
	btn@1@StepRight: 
	btn@1@EndRight: 
	btn@1@Minus: 
	btn@1@Reset: 
	btn@1@Plus: 
	2.0: 
	2.1: 
	2.2: 
	2.3: 
	2.4: 
	2.5: 
	2.6: 
	2.7: 
	2.8: 
	2.9: 
	2.10: 
	2.11: 
	2.12: 
	2.13: 
	2.14: 
	2.15: 
	2.16: 
	2.17: 
	2.18: 
	2.19: 
	2.20: 
	2.21: 
	2.22: 
	2.23: 
	2.24: 
	2.25: 
	2.26: 
	anm2: 
	btn@2@EndLeft: 
	btn@2@StepLeft: 
	btn@2@PlayPauseLeft: 
	btn@2@PlayPauseRight: 
	btn@2@StepRight: 
	btn@2@EndRight: 
	btn@2@Minus: 
	btn@2@Reset: 
	btn@2@Plus: 


