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A Neyman–Scott model with continuous
distributions of storm types
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Abstract

In previous studies, different types of precipitation (for example
convective and stratiform) were modelled using superposed Poisson
cluster processes. When the underlying processes are independent,
statistical properties, up to third order, are obtained by aggregation
of the properties of each independent point process. However, each
superposition introduces further parameters, which can result in too
many parameters. A continuum of storm types z is proposed, where z
comes from a continuous probability distribution, and selected model
parameters are taken to be functions of z. This has the effect of
allowing for different types of storms through superposition whilst
retaining a moderate number of model parameters. Using a uniform
distribution for z, properties up to third order are re-derived for the
Neyman–Scott model, and used to fit the model to a sixty year record
from Wellington, New Zealand. The parameterization enables the
exploration of whether storms with fewer cells, on average, tend to
have heavier or lighter rainfall.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3025

gives this article, c© Austral. Mathematical Soc. 2010. Published April 10, 2010. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3025


Contents C98

Contents

1 Introduction C98

2 Superposed continuous NSRP processes C99

3 Fitted model C102

4 Conclusions C104

1 Introduction

Applications of stochastic rainfall models based on a Neyman–Scott or Bartlett–
Lewis point process (Rodriguez-Iturbe et al., 1987; Cox and Isham, 1980) are
now abundant in the literature, and the models are proving to be of value
to problems in engineering hydrology (Wheater et al., 2005; Burton et al.,
2008). For example, in the recent Engineering Mathematics and Applications
Conference, held at the University of Adelaide in December 2009,1 some ap-
plications of a Neyman–Scott spatial-temporal rainfall model to problems
in urban drainage were outlined. These include applications to multi-million
dollar engineering projects, such as the Thames Tideway Tunnels project, the
Glasgow Metropolitan Strategic Drainage Plan, and the Auckland City Inte-
grated Catchment Study (Cowpertwait, 2009). In most drainage studies, for
the purpose of long-term planning and design, the stochastic rainfall models
simulate long series of data at sites that lack sufficient historical records.

Past studies have indicated the value of using independent superposed pro-
cesses to account for different types of precipitation, such as convective or
stratiform rain (Cowpertwait, 2004). However, superposing multiple Neyman–
Scott processes, for example, can result in too many model parameters. (Cur-
rent empirical experience suggests that any more than about eight param-

1http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2909
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eters per season is likely to be excessive, since the sample moments used
in model fitting are highly correlated.) Hence, there is a need to develop a
parsimonious model structure that is still capable of allowing for different
types of precipitation. The purpose of this paper is to outline one approach
to this problem, based on using a superposition of independent and contin-
uous storm types. Cox and Isham (1980) give a general discussion on the
superposition of point processes.

2 Superposed continuous NSRP processes

As in the original Neyman–Scott Rectangular Pulses model (Rodriguez-
Iturbe et al., 1987), let storm origins occur in a Poisson process with rate λ.
Now suppose each storm origin is of random type z that has continuous
probability density function fz so that a type z storm origin follows an in-
dependent Poisson process with rate λfz(z)dz. Each type z storm origin is
followed by a random number C(z) of cell origins that have waiting times,
relative to the storm origin, that are independent exponential random vari-
ables with parameter β(z). Hence, type z cell origins follow a Neyman–Scott
point process with rate λν(z)fz(z)dz, where ν(z) = E[C(z)]. Type z cell
origins form a marked point process of “rain cells” where each cell has a ran-
dom lifetime L(z), taken to be an independent exponential random variable
with parameter η(z), and a random intensity X(z) that remains constant
throughout the cell lifetime. Without loss of generality, we take X(z) to be
an independent exponential random variable with mean θ(z), and take C(z)
to be a Poisson random variable with mean ν(z). The original Neyman–Scott
Rectangular Pulses (nsrp) model occurs as the special case of a single storm
type, which follows by setting fz equal to the Dirac delta function and the
model parameters to be constants: β(z) = β , η(z) = η , ν(z) = ν , θ(z) = θ .

Let Nz(t) be the counting process of type z cell origins and Yz(t) be the total
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rain intensity due to type z storms. Then,

Yz(t) =

∫∞
u=0

Xz,t−u(u)dNz(t− u) (1)

where Xz,t−u(u) is the intensity at time t due to a type z cell with origin
at time t − u , which takes the value X(z) with probability e−η(z)u (or zero
otherwise). The total rain intensity Y(t) due to the superposed process of
all possible storm types is Y(t) =

∫
z
Yz(t), from which the mean of the total

intensity process follows as

E [Y(t)] =

∫
z

∫∞
u=0

E [Xz,t−u(u)] E [dNz(t− u)] = λ

∫
z

ν(z)θ(z)fz(z)

η(z)
dz . (2)

With the parameters set to constant values and fz to the delta function,
the mean intensity λνθ/η of the original nsrp model is recovered. A further
special case, that is particularly tractable and is used in the empirical study of
Section 3, is to take z to be a uniform random variable (fz(z) = 1 ; 0 < z < 1),
and set the parameter functions to η(z) = η , ν(z) = ν0+zν1 , and θ(z) = zθ ,
in which case the mean total intensity is

E [Y(t)] =
λθ( 1

2
ν0 +

1
3
ν1)

η
. (3)

The relationships from which (3) is derived are linear and give insight into
whether storms with low cell intensities on average tend to correspond to
storms with low or high average numbers of rain cells. For example, if ν1 > 0
then storms with smaller expected cell numbers, given by ν0 as z→ 0 , have
lower expected cell intensities since zθ→ 0 as z→ 0 .

Let {Y
(h)
z,i : i = 1, 2, . . .} be the aggregated rainfall series sampled over an

interval of width h due to a type z storm, so that Y
(h)
z,i =

∫ih
(i−1)h Yz(t)dt .

The total rainfall in the ith time interval due to the superposition of all
storm types is Y

(h)
i =

∫
z
Y
(h)
z,i . Properties, up to third order, of the aggre-

gated superposed process are the sum of the equivalent properties for each
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independent type z process

E
[
{Y

(h)
i − µ(h)}k

]
=

∫
z

E
[
{Y

(h)
z,i − µ(h)

z }k
]

, k 6 3 , (4)

where µ(h) = E
[
Y
(h)
i

]
and µ

(h)
z = E

[
Y
(h)
z,i

]
. Aggregated properties up to

third order then follow by substituting ν(z), β(z), η(z) and θ(z) for ν, β,
η and θ respectively, and λfz(z)dz for λ in the statistical properties derived
in the previous work (Rodriguez-Iturbe et al., 1987; Cowpertwait, 1998) and
using (4) to give

µ(h) = E[Y
(h)
i ] = λh

∫
z

ν(z)θ(z)fz(z)

η(z)
dz ; (5)

γ(h, l) = Cov[Y
(h)
i , Y

(h)
i+l]

= λ

∫
z

fz(z)ν(z)θ(z)
2
[
A(h, l, z)η(z)−3

×
{
4+ β(z)2ν(z)

[
β(z)2 − η(z)2

]−1}
− B(h, l, z)ν(z)

{
β(z)

[
β(z)2 − η(z)2

]}−1 ]
dz (6)

where

A(h, l, z) =

{
hη(z) + e−η(z)h − 1 , l = 0 ,
1
2

[
1− e−η(z)h

]2
e−η(z)h(l−1), l = 1, 2, . . . ,

B(h, l, z) =

{
hβ(z) + e−β(z)h − 1 , l = 0 ,
1
2

[
1− e−β(z)h

]2
e−β(z)h(l−1) l = 1, 2, . . . ;

and lastly the third moment

ξ(h) = E

[{
Y
(h)
i − µ(h)

}3]
= λ

∫
z

fz(z)ν(z)θ(z)
3η(z)−4
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×
[
36hη(z) − 72+ 36hη(z)e−η(z)h + 72h e−η(z)

+ 3ν(z)p (η(z),β(z),h)β(z)−1
(
β(z)2 − η(z)2

)−2
+ ν(z)2q (η(z),β(z),h)

{
2β(z)(η(z)2 − β(z)2)

× (η(z) − β(z))(2β(z) + η(z))(β(z) + 2η(z))
}]
dz (7)

where p(.) and q(.) are high order polynomials (Cowpertwait, 1998).

3 Fitted model

There are many possible choices for the density fz and model parameter
functions in Equations (5)–(7) but, as commented in Section 2, a particularly
tractable choice is to take z to be a uniform random variable, fz(z) = 1 ,
0 < z < 1 , and to set the parameter functions to η(z) = η , ν(z) = ν0+ zν1 ,
and θ(z) = zθ . Based on this choice the integrals in (5)–(7) were evaluated,
and the model properties implemented into a model fitting algorithm written
in R (R Development Core Team, 2009).

Using data from a site in Kelburn (near Wellington) and the previous fitting
procedure (Cowpertwait, 2004), the model was fitted to sample values of the
coefficient of variation αh, the lag one autocorrelation ρh, and the skewness κh
at aggregation levels h = 1, 6 and 24. A good fit was obtained to these
properties. Table 1 lists the resulting parameter estimates.

From Table 1 a clear seasonal variation can be discerned in the estimates,
with higher storm rates λ over the winter months, for example. However, it
is appropriate to focus on the new parameters, ν0 and ν1, since these have
not been studied before. For most of the year ν̂1 > 0 , which implies storms
with high expected numbers of cells have higher mean cell intensities. The
converse is also implied: storms with lower mean cell intensities are expected
to have fewer rain cells. Hence, for this data, there is a positive correlation
between cell numbers and cell intensity. Two months (April and May) have
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Table 1: Parameter estimates for Kelburn.

Month λ̂

(h−1)
ν̂0
(cells
per
storm)

ν̂1
(cells
per
storm)

β̂

(h−1)
η̂

(h−1)
θ̂

(mm h−1)

1 0.00591 5.54 8.80 0.0897 1.02 3.13
2 0.00687 2.51 12.50 0.1008 1.04 2.92
3 0.00774 4.15 11.46 0.1061 1.20 3.07
4 0.00724 15.25 −1.54 0.0958 1.36 3.42
5 0.00768 16.83 −0.78 0.0828 1.46 3.75
6 0.00831 14.37 5.70 0.0782 1.41 3.61
7 0.00955 10.33 11.24 0.0842 1.21 2.55
8 0.0117 6.18 13.10 0.0975 1.03 1.90
9 0.0130 4.44 12.25 0.1084 1.05 1.72
10 0.0107 7.83 5.65 0.1029 1.12 2.66
11 0.00799 8.91 3.81 0.0903 1.15 3.25
12 0.00626 7.85 5.84 0.0849 1.10 3.44
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negative values for ν1 which suggests for these months higher cells numbers
have lower than average cell intensities. However, this is only slight, because
the estimates for ν1 are small (ν1 < 2); hence the original model, which is
obtained as the special case ν1 = 0 , may be adequate for April and May
(Table 1).

To assess the fit to extreme values that are not used in the fitting procedure
but which are important in many hydrological applications, two hundred
samples were simulated using the fitted model (Table 1). These samples con-
sisted of simulated 1h rainfall depths and each had record lengths (60 years)
equal to the record length of the historical data. For the simulated series, an-
nual maximum values at the 1h aggregation level were extracted. These were
ordered and the median of the ordered values found. In addition, approx-
imate 95% confidence intervals of the ordered maximum values were found
from the simulated samples. Together with the ordered 1h annual max-
ima taken from the historical record, these were plotted against the reduced
Gumbel variate and are shown in Figure 1. This procedure was repeated at
the 24h (daily) aggregation level and the result shown in Figure 2.

There is some evidence of underestimation at the 1h level at return periods
in excess of five years (Figure 1). For the 24h level the observed values fall
within the confidence bands indicating a good fit to daily extreme values
(Figure 2). Further empirical work is needed to compare these results with
those obtained for other parameterizations of the model.

4 Conclusions

A continuous distribution of storm types was built into the parameterization
of the nsrp model. A uniform distribution of storm types and linear functions
for expected cell numbers and mean cell intensity was used in fitting the
model to the Kelburn series. This allowed for different types of storms whilst
retaining a parsimonious number of parameters. For most of year, there was



4 Conclusions C105

−1 0 1 2 3 4 5

0
10

20
30

40
50

60
70

reduced variate

1h
r 

an
nu

al
 m

ax
im

a(
m

m
)

       

2 5 10 20 50 100

T

Figure 1: Annual maximum 1h rainfall. The dotted lines are the 95% con-
fidence intervals and the solid line the median value based on a simulated
sample of 200 years. The crosses are the observed values for Kelburn.
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Figure 2: Annual maximum 24h rainfall. The dotted lines are the 95% con-
fidence intervals and the solid line the median value based on a simulated
sample of 200 years. The crosses are the observed values for Kelburn.
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a positive correlation between expected cell numbers and mean cell intensity.
Further work is required to investigate alternative parameterizations.
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