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Abstract

The projection-2 method commonly used for the non-iterative time
integration of the Navier–Stokes equations introduces a second order in
time error. This error is reduced to third order when the projection-3
method is used. However, the projection-3 method can lead to solu-
tions that are unbounded in time and, consequently, the projection-3
method has received little attention. This article compares the sta-
bility and performance of the projection-3 method with that of the
projection-2 method. Both methods have been implemented in a
Navier–Stokes solver that integrates the three dimensional equations
on a staggered Cartesian grid. Time integration uses a second order
hybrid Crank–Nicolson/Adams–Bashforth scheme. Results are pre-
sented for two test cases.
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1 Introduction

Fractional step projection methods integrate the Navier–Stokes equations in
time at each time step by first solving the momentum equations using an
approximate pressure field to yield an intermediate velocity field that will
not, in general, satisfy conservation of mass. A Poisson equation is then
solved with the divergence of the intermediate velocity as a source term to
provide a pressure or pressure correction, which is then used to correct the
intermediate velocity field, providing a divergence free velocity field. The
pressure is updated and integration then proceeds to the next time step. An
extensive list of references for various fractional step methods developed for
the Navier–Stokes equations was given by Armfield and Street [3].

The projection-1 (P1) method sets the pressure field to zero in the momen-
tum equation and the Poisson equation is then solved for the new pressure,
while the projection-2 (P2) method sets the pressure in the momentum equa-
tion to that obtained at the previous time step, and the Poisson equation is
then solved for a pressure correction. Both the P1 method, with appropriate
intermediate velocity boundary conditions, and the P2 method provide sec-
ond order accuracy in time for the velocity and pressure fields, provided the
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momentum equation is integrated using a second order accurate scheme [1].

The projection-3 (P3) method, first proposed by Gresho [4], uses a linear
extrapolation from previous time steps to give a more accurate estimate of
the pressure used in the momentum equation. This increases the order of
the fractional step error—the additional error of the fractional step method
with respect to an iterative scheme—from second to third order [3]. The ad-
vantage of the P3 method over an iterative method is that it is considerably
faster since it only requires one iteration per time step. However, one of the
main drawbacks of the P3 method concerns its stability. Shen [12] showed
analytically that the P3 method can lead to solutions that are unbounded in
time. Armfield and Street [3] tested the P3 method for a two dimensional
natural convection flow in a square cavity and found that it remained stable
for this case and reduced the size of the overall time stepping error by a
factor of four. This article compares the P3 scheme with the P2 and itera-
tive schemes for two cases. The first—two dimensional, isothermal, laminar
flow in a driven cavity—is a relatively simple flow which we use primarily
to validate the implementation of the schemes in the code. The second case
is a typical ‘real world’ application—a large eddy simulation of a convective
atmospheric boundary layer. Here we demonstrate that second order accu-
racy is maintained for all variables and assess the stability and performance
of the P3 method for this more complex case. All simulations are performed
using the puffin code [5, 7, 8].

2 Driven cavity

The governing equations for isothermal laminar flow in a square driven cavity
are the Navier–Stokes equations for incompressible flow, which are written
in Cartesian tensor notation as
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∂uj
∂xj

= 0 . (2)

Here xi are the components of the position vector, t the time, ui the com-
ponents of the velocity vector, p the pressure, and Re the Reynolds number.
The equations are normalized in terms of cavity width L and lid velocity U .

Numerical solution of the equations uses a finite volume method on a
staggered Cartesian grid. All spatial derivatives are approximated using a
second order central scheme. Time integration uses a hybrid implicit/explicit
scheme in which Crank–Nicolson is used for the diffusion terms and a second
order Adams–Bashforth scheme is used for the advection terms. This scheme
is second order accurate in time without iteration [8].

In the P2 method, the momentum equations are first integrated using the
pressure field from the previous time step, pn−1/2, to obtain an intermediate
velocity field ũn+1

i at time t = n+1 . In general, this velocity field will not be
divergence-free. In order to obtain a divergence free velocity field, a Poisson
equation is solved for a pressure correction p′ in which the source term is the
divergence of the intermediate velocity field,

∂2p′

∂x2
j

=
1

∆t

∂ũn+1
j

∂xj
. (3)

The solution of this equation is then used to correct the pressure and velocity,

pn+1/2 = pn−1/2 + p′ , (4)

un+1
i = ũn+1

i −∆t
∂p′

∂xi
. (5)

The velocity correction step constitutes a projection of the intermediate ve-
locity field onto a subspace of divergence free velocity fields. For this scheme
the projection error can be shown to be second order in time [1].

The P3 projection method requires only a very simple modification to
the above scheme. Instead of using the pressure pn−1/2 in the momentum
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equations, an estimate of the pressure at time t = n + 1/2 is obtained by
linear extrapolation,

p̃n+1/2 = 2pn−1/2 − pn−3/2 . (6)

The pressure used in the momentum equation is now approximated to second
order, resulting in a projection error that is third order in time [3].

A third scheme, which removes the projection error altogether, involves
iterating a number of times through the momentum and pressure correction
steps at each time step. We refer to this as the iterative scheme. For the
cases presented here, the results remained essentially unchanged when more
than three iterations were used and so three iterations were used for all cases.

The Adams–Bashforth scheme used for the integration of the advection
terms in the momentum equations requires information from t = n and
t = n − 1 in order to perform the extrapolation to t = n + 1/2 . Similarly
the P3 method requires information from t = n− 1/2 and t = n− 3/2 . For
this reason, the first two time steps are performed using Crank–Nicolson for
all terms in the momentum equations and the iterative scheme for pressure.

The matrix equations are solved using a preconditioned BiConjugate Gra-
dient Stabilized method. For the momentum equations we use a Jacobi pre-
conditioner, while for the pressure correction equation we use a precondi-
tioner based on the Modified Strongly Implicit (msi) method. For the mo-
mentum equations the solver iterates until the L2 norm of the residual over
the domain is less than a preset maximum conservation error. For the pres-
sure correction equation, the solver iterates until the residual is reduced by
an order of magnitude. The divergence of the velocity field is then checked.
If the divergence error is greater than the maximum allowed conservation
error the pressure correction procedure is repeated. This continues until
the conservation error criterion has been met. For this case the maximum
conservation error was set to 10−10 for all variables. We found that it was
necessary to make this value at least two orders of magnitude smaller than
the time stepping errors to be measured (typically of order 10−8 for this case)
to ensure that conservation errors did not contaminate the results.
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The driven cavity simulation uses a uniform grid with 100×100 cells. The
Reynolds number is set to Re = 200 which gives a maximum cell Reynolds
number of approximately two. Dirichlet boundary conditions are used for
the momentum equations with ub = vb = 0 at the side and bottom walls and
ub = U and vb = 0 at the lid of the cavity. Neumann boundary conditions
are used for the pressure correction equation at all walls, with the gradient
in the direction normal to the boundary set to zero. Initial conditions are
u(0) = v(0) = p(0) = 0 . The equations are integrated from t = 0 to t = 1 .
A supplementary file shows the flow field in the cavity at t = 1 .

Errors were calculated at t = 1 for solutions obtained with cfl numbers
of 0.4, 0.2, 0.1 and 0.05, where cfl = ∆tU/∆x with ∆t the time step and
∆x the width of a grid cell. Because the pressure solution is staggered in time
with respect to the velocity solution, the pressure at t = 1 must be obtained
by extrapolation, to avoid an apparent first order error for the pressure solu-
tion [2]. Errors were quantified as the L2 norm of the difference between the
test solution and a benchmark solution obtained using the iterative scheme
and a cfl number of 0.01. The time step used for the benchmark solution
is more than four times smaller than the smallest time step used for the test
cases. Since all the time stepping schemes used are second order, the error in
the benchmark solution will be at least an order of magnitude smaller than
that of the test solutions and can therefore be considered negligible.

Figure 1 shows the u and p errors for the P2, P3 and iterative schemes.
The results for v were similar to those for u. All schemes display quadratic
convergence with reduction in time step indicating that they are second order
accurate in time. The errors for the P3 and iterative schemes are very similar.
Since the projection error is negligibly small for the iterative scheme, this
indicates that the P3 method reduces the projection error to a negligible value
for this case. With the P2 scheme, the u error is approximately twice that
obtained with the P3 and iterative schemes. The difference is less significant
(approximately 30%) for p and the difference for v was similar to p. The
improvement in accuracy achieved with the P3 method compared to the
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Figure 1: Time accuracy for the driven cavity case.
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P2 method is not as marked as for the natural convection cavity tested by
Armfield and Street [3] where a four-fold reduction in error was measured.
Nevertheless, a two-fold reduction is significant.

3 Atmospheric boundary layer

A typical ‘real world’ application in which time accuracy is important is in
simulations of the atmospheric boundary layer. In this section we assess the
stability and performance of the P3 method for a simulation of a convective
atmospheric boundary layer. The governing equations are the Boussinesq
equations for a shallow atmospheric boundary layer,

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xi
+ δi3g

(θ − 〈θ〉)
Θref

− εijkfjuk −
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∂xj

, (7)
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∂xj
, (8)

∂uj
∂xj

= 0 . (9)

Here δij is the Kronecker delta, εijk the permutation tensor, fj the Coriolis
parameter, g the acceleration due to gravity and angled brackets represent
averaging on horizontal planes. The pressure p is the non-hydrostatic com-
ponent of the pressure normalized by the reference density %ref. The virtual
potential temperature θ is decomposed as

θ(x, y, z, t) = θ0(z) + θ1(x, y, z, t) , (10)

where subscript 0 refers to the initial base state profile and subscript 1 to
dynamic perturbations about the base state. Θref is a reference virtual poten-
tial temperature and is set equal to the virtual temperature at the reference
level, namely the ground. τij and γθ are the turbulent fluxes of momentum
and virtual potential temperature respectively.
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A large eddy simulation approach is used to account for the fact that
there are scales of motion that cannot be resolved on the grid. As such, the
dependent variables, ui, p and θ, in equations (7–9) are considered to repre-
sent spatially filtered quantities. The anisotropic component of the turbulent
momentum flux is parameterized using the Smagorinsky–Lilly model [10, 13],

τij −
1

3
δijτkk = −2KmSij , (11)

where Sij is the strain rate,

Sij =
1

2

(
∂ui
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− 1

3
δij
∂uk
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, (12)

and the eddy viscosity

Km = (Cs∆)2 |S|
√

1− Ri/Prt . (13)

Here |S| =
√

2SijSij , Cs is a dimensionless model coefficient, ∆ the width of
the spatial filter that is applied to the equations, and Prt the subgrid-scale
turbulent Prandtl number. The gradient Richardson number Ri = N2/|S|2
with the buoyancy frequency N given by N2 = −(g/%)∂%/∂z . A damping
function [11] is used to account for the decreasing eddy size observed as the
surface is approached. A modified length scale is calculated from

1

(l∗)2
=

1

(Cs∆)2
+

1

(κz)2
, (14)

where κ is the von Karman constant with a value of 0.41, and z the distance
from the surface. The eddy viscosity is then computed as

Km = (l∗)2|S| . (15)

The turbulent flux of virtual potential temperature is modelled as

γθ = −Km

Prt

∂θ

∂xj
. (16)
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Kirkpatrick et al. [6] further discussed turbulence modelling in the atmo-
spheric boundary layer.

The numerical methods used to solve these equations are the same as
those described in Section 2. The treatment of the potential temperature
equation is the same as that of the momentum equation, with the exception
of the advection terms, where a quick scheme with ultra flux limiter [9] is
used to ensure that the solution remains monotonic.

The test cases use a 60× 60× 64 cell grid on a domain of size of 6 km×
6 km × 2.2 km. The grid is stretched in the vertical direction to give 20 m
vertical resolution at the ground and the capping inversion. Resolution in
the horizontal directions is 100 m. This is typical of the resolution currently
used for large eddy simulations of the atmospheric boundary layer. The base
state is a neutrally stratified boundary layer with θ = 295 K up to a height
of 1500 m. The boundary layer is capped by a 6.5 K temperature inversion
at 1500 m, above which the air is stably stratified with ∂θ/∂z = 2 K/km. The
initial velocity above the boundary layer is equal to the geostrophic winds,
which are set to Ugeo = 10 m/s and Vgeo = 0 m/s. Within the boundary layer
the velocity profile follows a 1/7th power law. The initial large scale pressure
gradient is set such that it balances the Coriolis acceleration associated with
the geostrophic winds. The Coriolis parameter is set to f = 10−4 s−1. Peri-
odic boundary conditions are used at the lateral boundaries, while the top
boundary is impermeable, and adiabatic with zero shear stress. At the ground
the mean friction velocity is set to u∗ = 〈τw〉1/2 = 0.6 m/s, and the mean tem-
perature flux to 〈γw〉 = 0.24 K m/s. The coefficient in the Smagorinsky–Lilly
model is set to Cs = 0.18 and the turbulent Prandtl number to Prt = 0.4 .
These are typical values for an unstably stratified boundary layer.

The atmospheric simulations were run on a multiprocessor Tyan VX50–
B4881 computer. The computer has 8 dual core AMD Opteron 865 chips
(16 cpus) with 2 MB L2 cache and 8 GB of DDR400 PC3200 RAM. The
code is parallelized using Message Passing Interface (mpi) and linked to the
public domain mpich2 libraries. Parallelization is achieved through domain
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decomposition with the domain divided into horizontal slices. The computa-
tions for each slice are performed by a different processor. The BiConjugate
Gradient solver parallelizes in a straightforward manner, as does the Jacobi
preconditioner. However, the msi preconditioner does not. Instead, for the
parallel runs, we use a ‘zebra’ Gauss–Seidel preconditioner with successive
overrelaxation and Chebyshev acceleration. By ‘zebra’ we mean that an
odd–even alternation strategy is used in the vertical direction, which allows
parallelization with minimal interprocessor communication when horizontal
slices are used for the domain decomposition.

The equations were first integrated from t = 0 to t = 1800 s using the P3
scheme with a maximum cfl number of 0.4 to allow the turbulent boundary
layer to develop. Accuracy tests were then performed over a period of 180 s
and errors quantified in the same manner as described in Section 2. For
this case, the maximum conservation errors were set to 10−6, as the smallest
time stepping error was of order 10−4. The benchmark simulation was run
with ∆t = 0.05 s, which corresponds to a maximum cfl number in the
domain of 0.015. Test simulations were then run for ∆t = 0.25, 0.5, 1.0, 2.0 s,
corresponding to cflmax = 0.075, 0.15, 0.3, 0.6.

Simulations were run on eight of the 16 available cpus and required∼ 0.8 s
wall clock time per time step. With ∆t ∼ 1.3 for cfl = 0.4 , this corresponds
to approximately 40 minutes computation time per hour of simulation time.
The parallel efficiency of the code, that is the ratio of the speed-up to the
number of processors, is approximately 82% for this case. A supplementary
file contains an animation showing the evolution of the flow during the first
30 minutes of the simulation.

Figure 2 shows the u, v, w, θ and p errors for the P3 scheme. The errors for
all dependent variables display quadratic convergence with reduction in time
step indicating that second order accuracy was achieved for all variables for
this complicated test case. The errors for the P2 and iterative schemes were
very similar to those of the P3 scheme and are not shown. This indicates that
the projection error is negligible for this more complex case. Nevertheless,
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Figure 2: Time accuracy of the P3 method for the atmospheric boundary
layer case.
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the P3 method remained stable for the 30 min ‘spinup’ of this complex case,
and remained stable when the simulation was run to t = 2 h.

4 Conclusions

The results for the driven cavity test case show that the P3 method signifi-
cantly reduces the size of the projection error, as expected since the order of
the projection error is increased from second to third order with this scheme.
This led to a two-fold reduction in the overall time stepping error for u and
a lesser reduction for v and p for this case. The reduction in error obtained
using the P3 method depends on the size of the projection error relative to
the other time integration errors and this will vary from case to case. For
the natural convection cavity flow tested by Armfield and Street [3] the er-
ror was reduced by four-fold. For the atmospheric boundary layer case, the
projection error was negligible compared to the other errors, and the P2, P3
and iterative methods all gave very similar results. However, even in this
case the P3 method still has the advantage of lower run time. By using a
more accurate approximation of the pressure in the momentum equations,
the number of sweeps of the solver needed to reduce the conservation errors
to the required level is reduced. For the atmospheric boundary layer case, the
number of sweeps of the matrix equation solver per time step was reduced
by 35–40% on average, which reduced run time by approximately 30%.

The time accuracy of the code has been verified, with the accuracy of all
variables, including pressure, shown to be second order for both the simple
driven cavity case and the complex atmospheric boundary layer case. This is
noteworthy considering the complexity of the equations, turbulence models
and boundary conditions used for the atmospheric boundary layer case.

The P3 method has been shown to be stable for a complex, ‘real world’
simulation. Tests of other similar cases have also shown it to be stable.
The only exceptions we have found to date involved the use of a Neumann-
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type boundary condition such as an ‘outlet’ for the momentum equation.
With periodic, ‘specified flux’, or Dirichlet type boundary conditions, global
conservation of mass is automatically ensured as long as the boundary values
have been set appropriately. This is not true with a Neumann boundary
condition and consequently the mass flux across the outlet boundary must
be corrected as part of the pressure correction step in order to enforce global
mass conservation. We suggest that this correction may generate time step
scale oscillations in the pressure field close to the outlet, which are then
amplified by the extrapolation procedure used in the P3 method, causing the
simulation to become unstable.

The question as to why the P3 method appears to be stable for most
cases, when it has been shown analytically to be unstable, is the subject of
ongoing research by the authors. The stability analysis of Shen [12] does not
take into account the effect of boundary conditions. It may be an appropriate
choice of boundary conditions stabilizes the method.
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