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Abstract

We analyse the travelling wave solutions in an adiabatic model
with two-step chain branching reaction mechanism. We show that
the behaviour of the combustion waves are similar to the case of the
corresponding nonadiabatic one-step reaction, namely there is residual
amount of fuel left behind the travelling waves and the solutions can
exhibit extinction. We also analyse how the speed of the travelling
wave solutions and the residual amount of fuel left behind the fuel
change, as control parameters are varied.
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1 Introduction

Any scientist who has gazed into a campfire will appreciate the complexity of
combustion and the difficulty in constructing a theoretical model of the pro-
cess. To date only the simplest models have been comprehensively analysed.
Combustion waves have been studied for some time and are the topic of a
relatively recent review by Merzhanov and Rumanov [9]. Combustion waves
have been observed in numerous experimental situations [9], and play impor-
tant roles in industrial processes, such as the production of exotic materials
using Self propagating, High temperature Synthesis (shs) [8] .

One-step irreversible reaction models have contributed greatly to our un-
derstanding of combustion phenomena. In these models it is assumed that
the reaction is well modeled by a single step of fuel (F ) and oxidant (O2)
combining to produce products (P ) and heat. The generic kinetic schemes
of models with one-step chemistry are

F
k(T )−→ P + heat or F +O2

k(T )−→ 2P + heat,

where the temperature dependent rate constant k(T ) is given by Arrhenius
kinetics k(T ) = e−Ta/T , Ta is the activation temperature, and T is the tem-
perature of the reaction. These models have proven their usefulness since
they are relatively simple and allow analytical investigation using asymp-
totic methods in the limit of infinitely large activation temperature [4, 18].
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The most important feature of one-step models is that they have led to many
useful and qualitatively correct predictions for phenomena such as: ignition,
extinction and stability of diffusion flames; propagation and stability of pre-
mixed flames; flame balls and their stability; structure and propagation of
flame edges etcetera.

However, in the overwhelming majority of cases, the chemical reactions
in flames proceed according to a complex mechanism, that involves a variety
of different steps [18]. Moreover, for many reactions, models with simple
one-step kinetics may lead to erroneous conclusions as noted by Westbrook
and Dryer [17]. In other words, if we want to obtain a realistic description
of the flame kinetics, several different reaction steps, each with its own inter-
mediate chemical species, have to be taken into account. Recent advances in
computational power make it possible to study the flame behaviour using full
numerical solutions of the equations of energy and mass transfer for all of the
species involved with detailed chemistry. Several numerical codes have been
developed in order to carry out these calculations, such as Sandia’s chemkin
code [15] or the Flame Master code [10]. These numerical algorithms have
been successfully applied to analyze the properties of both diffusion [11] and
premixed flames [12]. Although such investigations are useful in providing
some quantitative results for observed phenomena, there is still a great deal
of uncertainty about the reliability of these complex models when applied
to the prediction of generic behaviour of flames such as stable combustion
regimes, limits of the flame extinction and particularly the onset of pulsating
and cellular combustion regimes, when the dynamics of reactions begin to
change rapidly in space and/or time.

A logical compromise between the models with singe step and detailed
multi-step kinetics has been found recently by using reduced kinetic mech-
anisms. In a many articles [1, 11, 12, 13, e.g.] the detailed schemes of the
hydrogen and methane oxidation, which include dozens of intermediate re-
actions, were successfully reduced to several steps. The remarkable feature
of these type of models is that they allow on one hand, analytical investi-



2 Mathematical formulation C103

gation [1, 13] to be successfully undertaken, while on the other hand they
are able to produce excellent quantitative results [11, 12] to predict flame
characteristics accurately for some specific reactions such as flame propa-
gation velocities, flame structures including the profiles of temperature and
reactants etc. These studies are very important for applied problems, in
which the properties of flames for specific reaction and flame configuration
are studied.

In this article we focus on the investigation of premixed combustion waves
in a model with non-competing two-step chain branching reaction. As noted
by Dold et al. [2] the chain branching reaction model is more realistic in
describing real flames such as hydrocarbon flames in comparison to other
two-step reaction models. This model was initially considered by Liñán [7]
and Zeldovich et al. [18] and then generalized by Joulin et al. [6]. It is usually
referred to as Zeldovich–Liñán model. We believe that this preliminary in-
vestigation is a constructive step towards an understanding of the travelling
wave solution in chain branching reactions.

2 Mathematical formulation

We consider an adiabatic model in one spatial dimension that includes two
steps:

Autocatalytic chain branching A+B → 2B ;

Recombination B +M → C +M . (1)

Here A is the fuel, B is the radical, C is the product, and M represents any
molecule that is required to start the reaction but remains unchanged by the
reaction. Following Dold et al. [2, 3] and Zeldovich et al. [18] we assume that
all heat of the reaction is released during the recombination stage and the
chain branching stage does not produce or consume any heat. As noted by
Zeldovich et al. [18], in this scheme the recombination stage serves both as
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an inhibitor which terminates the chain branching and an accelerant which
produces heat. According to Dold and Weber [3], equations governing this
process can be written as

ρcp
∂T

∂t
= k

∂2T

∂x2
+ ρQArYB ,

∂YA
∂t

= DA
∂2YA
∂x2

− ABYAYBe−E/RT ,

∂YB
∂t

= DB
∂2YB
∂x2

+ ABYAYBe
−E/RT − ArYBρ/Mw , (2)

where T is the temperature, YA and YB represent the concentrations of fuel
and radicals respectively, ρ is the density, cp is the specific heat, k is the ther-
mal conductivity, Mw is the mean molecular weight, DA and DB represent
the diffusivities of fuel and radicals respectively, Ar and AB are constants of
recombination and chain branching reactions respectively, Q is the heat of
the recombination reaction, E is the activation energy for chain branching
reaction, and R is the universal gas constant.

We introduce the nondimensional variables

t′ =
ρQABR

cpMwE
t , x′ =

√
ρ2QABR

kMwE
x ,

u =
RT

E
, v =

YAMw

ρ
, w =

YBMw

ρ
, (3)

and rewrite (2) as

ut = uxx + rw ,

vt = τAvxx − βvwe−1/u ,

wt = τBwxx + βvwe−1/u − rβw , (4)

where we drop the primes and the following nondimensional parameters have
been introduced: β = cpE/QR , r = Ar/AB , τA,B = ρcpDA,B/k . Here
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parameter β is the dimensionless activation energy of the chain branching
step which coincides with the corresponding definition for the one step model
given by Gubernov et al. [4]. Parameter r is the ratio of the characteristic
time of the recombination and branching steps and cannot be reproduced in
one step approximation of the flame kinetics. The parameters τA,B represent
the inverse Lewis numbers for the fuel and radicals respectively.

Equations (4) are considered subject to the boundary conditions

u = 0 , v = 1 , w = 0 for x→∞ ,

ux = 0 , vx = 0 , w = 0 for x→ −∞ . (5)

On the right boundary we have cold (u = 0) and unburned state (v = 1),
where the fuel has not been consumed yet and no radicals have been produced
(w = 0). On the left boundary (x → −∞) neither the temperature of the
mixture nor the concentration of fuel can be specified. We only require that
there is no reaction occurring so the solution reaches a steady state of (4).
Therefore the derivatives of u and v are zeros and w = 0 for x→ −∞ .

2.1 Travelling wave solution

We seek a solution to the problem (4)–(5) in the form of a travelling wave
u(x, t) = u(ξ) , v(x, t) = v(ξ) , and w(x, t) = w(ξ) , where we introduce
ξ = x − ct , a coordinate in the moving frame and c is the speed of the
travelling wave. Substituting the travelling wave solution into the governing
equations we obtain

uξξ + cuξ + rw = 0 ,

τAvξξ + cvξ − βvwe−1/u = 0 ,

τBwξξ + cwξ + βvwe−1/u − rβw = 0 , (6)

and boundary conditions

u = 0 , v = 1 , w = 0 for ξ →∞ ,
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uξ = 0 , vξ = 0 , w = 0 for ξ → −∞ . (7)

Following Simon et al. [14] and Zeldovich et al. [18] we consider the case
when Lewis numbers for the fuel and the radicals are equal to unity (that
is, we assume equal diffusivity of the reactant, the radical and heat). Al-
though this assumption simplifies the problem significantly, it still allows the
investigation of the generic properties of the system (6) and (7).

In the case τA = τB = 1 equations (6) possess an integral S = βu+v+w .
Using S and the first boundary condition in (7), equations (6) can be reduced
to a system of two second order equations for the temperature and the fuel
concentration

uξξ + cuξ + r(1− βu− v) = 0 ,

vξξ + cvξ − βv(1− βu− v)e−1/u = 0 , (8)

where w = 1 − βu − v . On the right boundary (ξ → ∞) we require that
u = 0 and v = 1 , whereas on the left boundary (ξ → −∞) we modify the
boundary conditions to

u = β−1(1− σ) , v = σ , (9)

where σ denotes the residual amount of fuel left behind the wave and is
unknown until a solution is obtained. We note here that at first glance,
system (8) looks very similar to the equations describing the dynamics of
the one-step adiabatic reaction model considered by Weber et al. [16]. How-
ever, in contrast to the one-step adiabatic case, equations (8) do not have an
integral which enabled further simplification as given by Weber et al. [16].
Moreover, boundary conditions (9) suggest that there can be some fuel left
behind the reaction zone, which is impossible in the one-step adiabatic reac-
tion model case.
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3 Travelling front solutions

The solutions to equations (8) subject to the boundary condition (7) exhibit
travelling front solutions similar to those found for the one-step reaction
models, such that u(ξ) and v(ξ) are monotonic and uξ(ξ), vξ(ξ) and w(ξ)
are bell shaped functions of the spatial coordinate. Typical solution pro-
files u(ξ), v(ξ), and w(ξ) are shown in Figures 1 and 2 for r = 0.001 , β = 1.0
and β = 4.0 respectively. Note that numerically we determined the extinc-
tion value of β to be β ≈ 4.26 · · · . Hence in Figure 1 the nondimensional
activation energy, β, is well below the extinction value, and the concentra-
tion of radicals, which is shown with the dotted line, can reach values of the
order O(1). Parameter σ becomes negligible and no fuel leakage from the
reaction zone is observed. However, in Figure 2 (when the value of β is close
to the extinction value) the residual amount of fuel, σ, becomes significant
indicating that the conversion of fuel is incomplete and a fuel leakage occurs.
The fuel decomposition reaction region has the same width as the recombi-
nation reaction zone indicating that close to the extinction limit the flame
structure changes to the regime similar to the fast recombination regime of
the Zeldovich–Liñán model.

The properties of the travelling front solutions are summarized in Fig-
ure 3 where the speed of the front, c, is shown as functions of β for several
values of r. At first glance, the dependence of c on β in Figure 3 resembles
the behaviour of the speed of the front for the model with one-step reaction
scheme, which was studied by Gubernov et al. [4]. Namely, c reaches the
global maximum for some value of β and decays monotonically as we in-
crease (or decrease) β from the value corresponding to the maximum. How-
ever, more detailed investigation shows that there is a significant difference
between the prediction of the one- and two-step models. In particular, for the
model with one-step reaction mechanism the travelling front solution exists
for any value of β and its speed decays exponentially to zero as we increase β.
This is not the case for the model with two-step reaction mechanism stud-
ied here. As we increase β (for a fixed r) up to some critical value βc, the
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Figure 1: Travelling front solution profiles for: (a) temperature βu(ξ);
(b) fuel v(ξ); and (c) radical w(ξ); for β = 1.0 , r = 0.001 .
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Figure 2: Travelling front solution profiles for: (a) temperature βu(ξ);
(b) fuel v(ξ); and (c) radical 10w(ξ); for β = 4.0 , r = 0.001 .
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Figure 3: Speed of the front as a function of β for various values of r. The
solutions for r = 0.001 , 0.005 and 0.01 are denoted by the black dashed-dot,
red bold and blue dashed curves respectively.
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speed of the front decays rapidly and the travelling front solution ceases to
exist for β > βc. Furthermore, there is some residual amount of fuel left
behind the front in case of the two-step model unlike the one-step adiabatic
model, which has zero residual fuel. To some extent, the properties of the
two-step adiabatic model studied here resemble the properties of the nona-
diabatic one-step model investigated by Gubernov et al. [5], more than the
adiabatic one-step studied by Gubernov et al. [4]. This is expected since the
recombination step, which is an inhibitor of the chain branching reaction,
plays a similar role as the heat exchange with the surrounding medium in
the one-step nonadiabatic model. In both cases there is a nonzero residual
amount of fuel left behind the reaction zone. The similarity between these
two cases is also strengthened by the likeness of the behaviour of the speed
of the front as a function of the parameter β. Namely, in both the one-step
nonadiabatic and the two-step adiabatic models, the travelling front solution
ceases to exist as we approach some critical value of βc (in the combustion
literature this event is usually called extinction as stated by Gubernov et
al. [5]). However, the route to extinction in these models is different. In the
case of the one-step nonadiabatic model, for given parameter values, there
are either two solution branches with different speeds or no solutions. The
extinction occurs when the two solution branches coalesce (this event is also
known as the turning point or the fold bifurcation). For the two-step reaction
mechanism the extinction occurs when the speed of the front drops down to
zero as we approach the critical parameter values.

4 Conclusions

We undertook a preliminary investigation into the combustion wave propa-
gation in an adiabatic model with two-step chain branching reaction mech-
anism. In contrast to Dold and Weber [3] we do not use the activation
energy asymptotic approach and consider the model for general values of
activation energy. We also used different nondimensional parameters which
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enabled more convenient comparison between the properties of one- and two-
step models. The model exhibits travelling combustion front solutions. The
properties of these solutions differ from the properties of one-step models.
Combustion waves exist in certain regions of the parameter space and are
characterized by non-zero residual amount of reactant, σ, left behind the
travelling wave. This is not possible in one-step adiabatic flame models as
all the fuel is used up in such models. To some extent this characteristic of
the two-step adiabatic model is similar to the properties of premixed com-
bustion waves in nonadiabatic one-step models, which can also exist in a
certain region of parameter space and exhibit extinction as the boundaries of
this region are reached. We are presently investigating the stability of these
travelling wave solutions, and extending our work to cases when the Lewis
numbers for the fuels and the radicals are not equal to unity as we have done
in this investigation.
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