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Monotone iterates for solving systems of
semilinear elliptic equations and applications
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Abstract

Consider monotone finite difference iterative algorithms for solving
coupled systems of semilinear elliptic equations. A monotone domain
decomposition algorithm based on a modification of Schwarz alter-
nating method and on decomposition of a computational domain into
nonoverlapping subdomains is constructed. Advantages of the algo-
rithm are that the algorithm solves only linear discrete systems at
each iterative step, converges monotonically to the exact solution of
the nonlinear discrete problem, and is potentially parallelisable. The
monotone domain decomposition algorithm is applied to a gas-liquid
interaction model. Numerical experiments confirm theoretical results.
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1 Introduction

The elliptic system under consideration is in the form

−∇ · (ai∇ui) + fi(x, u1, u2) = 0 , x ∈ ω , i = 1, 2 , (1)

ui(x) = gi(x) , i = 1, 2 , x ∈ ∂ω ,

x ∈ Rk , ω̄ =
k∏

α=1

ω̄xα , ω̄xα = {0 ≤ xα ≤ rα},

where ω̄ = ω ∪ ∂ω , ∂ω is the boundary and ∇ is gradient operator in ω.
We assume that ai(x) > 0 , i = 1, 2 , on ω̄, and ai, fi and gi, i = 1, 2 , are
sufficiently smooth functions.

In solving such nonlinear problems by the finite difference method, the
corresponding discrete problem is usually formulated as a system of nonlinear
algebraic equations. One then requires a reliable and efficient computational
algorithm for computing the solution. A fruitful method for the treatment
of these nonlinear systems is the method of upper and lower solutions and
its associated monotone iterations [3].

Iterative domain decomposition algorithms based on Schwarz-type alter-
nating procedures have received much attention for their potential as efficient
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algorithms for parallel computing. For solving nonlinear elliptic equations,
Boglaev [1, 2] proposed the discrete iterative algorithms which combine the
monotone approach and an iterative domain decomposition method based on
the Schwarz alternating procedure. The computational domain is partitioned
into many nonoverlapping subdomains with interface γ. Small interfacial
subdomains are introduced near the interface γ, and approximate bound-
ary values computed on γ are used for solving problems on nonoverlapping
subdomains. Thus, this approach may be considered as a variant of a block
Gauss–Seidel iteration (or in the parallel context as a multi-coloured algo-
rithm) for the subdomains with a Dirichlet–Dirichlet coupling through the
interface variables. This article extends the monotone domain decomposition
algorithms of Boglaev [1, 2] to the system of nonlinear elliptic equations (1).

Section 2 introduces a nonlinear finite difference scheme for the numer-
ical solution of (1). Section 3 presents a monotone domain decomposition
algorithm. We show that monotonic convergence is maintained under the
proposed domain decomposition into nonoverlapping subdomains and asso-
ciated algorithm. Section 4 applies the monotone domain decomposition to
a gas-liquid interaction model.

2 A nonlinear difference scheme

On ω̄xα , α = 1, . . . , k , we set up nonuniform rectangular meshes

ω̄hxα = {x(iα)
α , 0 ≤ iα ≤ Nα ; x(0)

α = 0 , x(Nα)
α = rα} , α = 1, . . . , k .

Thus, we represent the mesh ω̄h in the form

ω̄h =
k∏

α=1

ω̄hxα , ω̄h = ωh ∪ ∂ωh,

where ωh and ∂ωh are sets of interior and boundary mesh points, respectively.
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For solving (1), consider the nonlinear difference scheme in the canonical
form [5]

Lhi Ui(p) + fi(p, U1, U2) = 0 , p ∈ ωh , Ui = gi on ∂ωh , i = 1, 2 , (2)

Lhi Ui(p) ≡ di(p)Ui(p)−
∑

p′∈σ′ (p)

ei(p, p
′
)Ui(p

′
),

where σ
′
(p) = σ(p) \ {p} , σ(p) is a stencil of the scheme at an interior

mesh point p ∈ ωh and ∂ωh is the boundary of ω̄h. We make the following
assumptions on the coefficients of the difference operators Lhi , i = 1, 2 :

di(p) > 0 , ei(p, p
′
) ≥ 0 , di(p)−

∑
p′∈σ′ (p)

ei(p, p
′
) ≥ 0 , p ∈ ωh. (3)

We now formulate the discrete maximum principle.

Lemma 1 Let the coefficients of the difference operators Lhi , i = 1, 2 , in (2)
satisfy (3). If mesh functions Wi(p), i = 1, 2 , satisfy the conditions

(Lhi + ci)Wi(p) ≥ 0 (≤ 0) , p ∈ ωh , Wi(p) ≥ 0 (≤ 0) , p ∈ ∂ωh,

where ci(p) ≥ 0 , i = 1, 2 , then Wi(p) ≥ 0 (≤ 0), i = 1, 2 , in ω̄h.

Samarskii [5] gave the proof of this lemma.

Remark 2 Difference schemes which satisfy the maximum principle from
Lemma 1 are said to be monotone. The monotonicity condition guarantees
that the systems of algebraic equations based on such methods are well-posed.
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3 Monotone domain decomposition

algorithm

By hyperplane

{x1 = ρm,m = 1, . . . ,M − 1 : ρ0 = 0 < ρ1 < · · · < ρM−1 < ρM = r1},

we decompose the mesh ω̄h intoM nonoverlapping rectangular subdomains ω̄hm,
m = 1, . . . ,M :

ω̄h =
M⋃
m=1

ω̄hm , ∂ωhm = γ0
m ∪ γm−1 ∪ γm , γ0

m = ∂ωh ∩ ω̄hm ,

γm = {ρm} × ω̄hy , ω̄hy ≡
k∏

α=2

ω̄hxα , ω̄hm ∩ ω̄hm+1 = γm ,

where the boundary ∂ωhm of ω̄hm consists of the boundaries γm−1 and γm which
belong to the hyperplane ρm−1 and ρm, respectively, and γ0

m which belongs to
the boundary ∂ωh. On ω̄h we introduce (M − 1) interfacial subdomains ϑ̄hm,
m = 1, . . . ,M − 1 , with boundaries ∂ϑhm in the form

∂ϑhm = γcm ∪ γbm ∪ γem , γcm = ∂ωh ∩ ϑ̄hm ,
γbm = {ρbm} × ω̄hy , γem = {ρem} × ω̄hy , ρbm < ρm < ρem ,

where ϑ̄hm overlaps ω̄hm∪ω̄hm+1 . Figure 1 illustrates the domain decomposition
in the two dimensional case.

We assume that sizes of all the subdomains ω̄hm and ϑ̄hm allow us to solve
Dirichlet boundary value problems based on the difference equations from (2).

3.1 Statement of domain decomposition algorithm

Consider the following domain decomposition approach for solving (2). On
each iterative step, we first solve problems on the nonoverlapping subdo-
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Figure 1: Fragment of the domain decomposition.

mains ω̄hm, m = 1, . . . ,M , with Dirichlet boundary conditions passed from
the previous iterate. Then Dirichlet data are passed from these subdomains
to the interfacial subdomains ϑ̄hm, m = 1, . . . ,M−1 , and problems on the in-
terfacial subdomains are computed. Finally, we piece together the solutions
on the subdomains.

1. Initialization: On the whole mesh ω̄h, choose initial functions V
(0)
i (p),

p ∈ ω̄h , i = 1, 2 .

2. On subdomains ω̄hm,m = 1, . . . ,M , compute mesh functions V
(n)
i,m (p),

m = 1, . . . ,M , i = 1, 2 , (here the index n stands for a number of
iterative steps) satisfying the difference schemes

(Lhi + c̄i)Z
(n)
i,m(p) = −Rh

i (p, V
(n−1)

1 , V
(n−1)

2 ) , p ∈ ωhm, (4)

Z
(1)
i,m(p) =

{
gi(p)− V (0)

i (p), p ∈ γ0
m ,

0, p ∈ γm−1 ∪ γm,
Z

(n)
i,m(p) = 0 , p ∈ ∂ωhm , n ≥ 2,
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Rh
i (p, V

(n−1)
1 , V

(n−1)
2 ) ≡ Lhi V

(n−1)
i + fi(p, V

(n−1)
1 , V

(n−1)
2 ) ,

where mesh functions c̄i(p), i = 1, 2 , is defined in (9).

3. On the interfacial subdomains ϑ̄hm, m = 1, . . . ,M − 1 , compute the
difference problems

(Lhi + c̄i)Y
(n)
i,m (p) = −Rh

i (p, V
(n−1)

1 , V
(n−1)

2 ) , p ∈ ϑhm, (5)

with the boundary conditions Y
(n)
i,m (γcm) = 0 , Y

(n)
i,m (γbm) = Z

(n)
i,m(γbm) ,

Y
(n)
i,m (γem) = Z

(n)
i,m+1(γem) .

4. Compute the mesh functions V
(n)
i (p), p ∈ ω̄h , i = 1, 2 , by piecing

together the solutions on the subdomains

V
(n)
i (p) =

{
V

(n)
i,m (p), p ∈ ω̄hm \ (ϑ̄hm−1 ∪ ϑ̄hm) , m = 1, . . . ,M ,

W
(n)
i,m(p), p ∈ ϑ̄hm , m = 1, . . . ,M − 1,

(6)

where V
(n)
i,m = V

(n−1)
i + Z

(n)
i,m , W

(n)
i,m = V

(n−1)
i + Y

(n)
i,m , and ϑ̄h0 = ∅ ,

ϑ̄hM = ∅ .

5. Stopping criterion is

max
p∈ω̄h
|V (n)
i (p)− V (n−1)

i (p)| ≤ δ , i = 1, 2 ,

where δ is a prescribed accuracy. If the stopping criterion is reached,
then stop, otherwise go to Step 2.

Algorithm (4)–(6) can be carried out by parallel processing, since on each

iterative step n the 2M problems (4) for Z
(n)
i,m(p), m = 1, . . . ,M , i = 1, 2 ,

and the 2(M − 1) problems (5) for Y
(n)
i,m (p), m = 1, . . . ,M − 1 , i = 1, 2 , can

be implemented concurrently.
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3.2 Monotone convergence of algorithm (4)–(6)

We assume that the functions fi, i = 1, 2 , are quasi-monotone nonincreasing

− ∂f1/∂u2 ≤ 0 , −∂f2/∂u1 ≤ 0 . (7)

Remark 3 Systems of elliptic equations with quasi-monotone nonincreasing
reaction functions appear in a number of reaction-diffusion models including
gas-liquid interaction models, the Belousov–Zhabotinskii reaction-diffusion
model and the Volterra–Lotka competition model in ecology [4].

Vector mesh functions Ũ(p) = (Ũ1(p), Ũ2(p)) and Û(p) = (Û1(p), Û2(p))
are called ordered upper and lower solutions of (2) if they satisfy the relation

Ũ(p) ≥ Û(p) , p ∈ ω̄h , and if

Lh1Û1(p) + f1(p, Û1, Ũ2) ≤ 0 ≤ Lh1Ũ1(p) + f1(p, Ũ1, Û2) , p ∈ ωh, (8)

Lh2Û2(p) + f2(p, Ũ1, Û2) ≤ 0 ≤ Lh2Ũ2(p) + f2(p, Û1, Ũ2) , p ∈ ωh,
Ûi ≤ gi ≤ Ũi on ∂ωh , i = 1, 2 .

The ordering relation Ũ ≥ Û is meant in the componentwise sense, that is,
Ũi(p) ≥ Ûi(p) , i = 1, 2 .

We assume that fi, i = 1, 2 , satisfy the constraints

max{∂fi(p, U1, U2)/∂ui; Û(p) ≤ U(p) ≤ Ũ(p)} ≤ c̄i(p), (9)

where U = (U1, U2) and c̄i(p) ≥ 0 , i = 1, 2 , are bounded functions in ω̄h.

We get the following convergence property of algorithm (4)–(6).
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Theorem 4 Assume that the coefficients of the difference operators Lhi , i =
1, 2 , in (2) satisfy (3), the functions fi, i = 1, 2 , satisfy (7) and (9). Let

Ṽ and V̂ be ordered upper and lower solutions (8) of (2).

If (V̄
(0)

1 , V
(0)
2 ) = (Ṽ1, V̂2), then the sequence {V̄ (n)

1 , V
(n)
2 } generated by (4)–

(6) converges monotonically to a solution (V̄1, V 2) of (2):

V̄1 ≤ V̄
(n+1)

1 ≤ V̄
(n)

1 , V
(n)
2 ≤ V

(n+1)
2 ≤ V 2 , in ω̄h.

If (V
(0)
1 , V̄

(0)
2 ) = (V̂1, Ṽ2), then the sequence {V (n)

1 , V̄
(n)

2 } generated by (4)–
(6) converges monotonically to a solution (V 1, V̄2) of (2):

V
(n)
1 ≤ V

(n+1)
1 ≤ V 1 , V̄2 ≤ V̄

(n+1)
2 ≤ V̄

(n)
2 , in ω̄h.

Moreover, the corresponding iterations (V̄
(n)

1 , V̄
(n)

2 ) and (V
(n)
1 , V

(n)
2 ) are

ordered upper and lower solutions.

Proof: Suppose that (V̄
(0)

1 , V
(0)
2 ) = (Ṽ1, V̂2). By the maximum principle in

Lemma 1, from (4) and (8), we conclude that

Z
(1)
1,m(p) ≤ 0 , Z

(1)
2,m(p) ≥ 0 , p ∈ ω̄hm . (10)

Using the mean value theorem, from (4) we obtain for i = 1, 2 ,

Rh
i (p, V

(1)
1,m, V

(1)
2,m) = −(c̄i − ∂f (1)

i /∂ui)Z
(1)
i,m + (∂f

(1)
i /∂ui′)Z

(1)
i′,m , p ∈ ωhm ,

(11)
where i

′ 6= i , the variable p is suppressed and the partial derivatives are
calculated at intermediate points (ηi,m, µi,m) such that V

(1)
1,m ≤ ηi,m ≤ V̄

(0)
1 ,

V
(0)
2 ≤ µi ≤ V

(1)
2,m . From here, (7), (9) and (10), we conclude

Rh
1(p, V

(1)
1,m, V

(1)
2,m) ≥ 0 , Rh

2(p, V
(1)

1,m, V
(1)

2,m) ≤ 0 , p ∈ ωhm , (12)
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V
(1)
i,m(p) = gi(p) , p ∈ γ0

m , V
(1)
i,m(p) = V

(0)
i (p) , p ∈ γm−1 ∪ γm ,

where V
(0)

1 = V̄
(0)

1 and V
(0)

2 = V
(0)
2 . Taking into account (10), by the maxi-

mum principle in Lemma 1, from (5) and (8), it follows that

Y
(1)

1,m(p) ≤ 0 , Y
(1)

2,m(p) ≥ 0 , p ∈ ϑ̄hm . (13)

Similar to (12), we can prove

Rh
1(p,W

(1)
1,m,W

(1)
2,m) ≥ 0 , Rh

2(p,W
(1)
1,m,W

(1)
2,m) ≤ 0 , p ∈ ϑhm , (14)

where W
(1)
i,m(γcm) = gi(γ

c
m) , W

(1)
i,m(γbm) = V

(1)
i,m(γbm), W

(1)
i,m(γem) = V

(1)
i,m+1(γem).

From here, (12) and the definition of V
(1)
i , i = 1, 2 , we conclude that

Rh
1(p, V

(1)
1 , V

(1)
2 ) ≥ 0 , Rh

2(p, V
(1)

1 , V
(1)

2 ) ≤ 0 , p ∈ ωh \ γ ,

where γ =
⋃M−1
m=1 γ

b,e
m . From the boundary conditions for V

(1)
i,m and W

(1)
i,m,

i = 1, 2 , it follows that V
(1)
i , i = 1, 2 , satisfy the boundary conditions

in (2). We now prove that the above inequalities hold true on the interfacial
boundaries γbm and γem, m = 1, . . . ,M − 1 . We check these inequalities in
the case of the left boundary γbm, since the second case is checked in a similar
way. From (4), (5), (10) and (13), we conclude that the mesh functions

R
(1)
i,m = V

(1)
i,m −W

(1)
i,m , i = 1, 2 , satisfy the difference problems

(Lhi + c̄i)R
(1)
i,m(p) = 0 , p ∈ ϑhbm = ωhm ∩ ϑhm,

R
(1)
i,m(p) = 0 , p ∈ ∂ϑhbm \ γm , R

(1)
1,m(p) ≥ 0 , R

(n)
2,m(p) ≤ 0 , p ∈ γm.

In view of the maximum principle in Lemma 1,

V
(1)

1,m(p)−W (1)
1,m(p) ≥ 0 , V

(1)
2,m(p)−W (1)

2,m(p) ≤ 0 , p ∈ ϑ̄hbm , i = 1, 2 . (15)

From here, (3), (6), (12), and taking into account that W
(n)
i,m(p) = V

(n)
i,m (p),

p ∈ γbm , i = 1, 2 , it follows that

Rh
1(p, V

(1)
1 , V

(1)
2 ) ≥ Rh

1(p, V
(1)

1,m, V
(1)

2,m) ≥ 0 , p ∈ γbm ,
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Rh
2(p, V

(1)
1 , V

(1)
2 ) ≤ Rh

2(p, V
(1)

1,m, V
(1)

2,m) ≤ 0 , p ∈ γbm .

This leads to the fact that V̄
(1)

1 and V
(1)
2 are upper and lower solutions of prob-

lem (2), respectively. From (10) and (13), we have V̄
(1)

1 ≤ V̄
(0)

1 , V
(1)
2 ≥ V

(0)
2 .

By induction on n, we can prove that {V̄ (n)
1 } and {V (n)

2 } are monotonically
decreasing and increasing sequences of upper and lower solutions to prob-
lem (2), respectively.

Similarly, for (V
(0)
1 , V̄

(0)
2 ) = (V̂1, Ṽ2), we can prove that {V (n)

1 } and {V̄ (n)
2 }

are monotonically increasing and decreasing sequences of lower and upper
solutions to problem (2), respectively.

We now prove that (V̄
(n)
i , V

(n)
i ), i = 1, 2 , are ordered upper and lower

solutions
V

(n)
i (p) ≤ V̄

(n)
i (p) , p ∈ ω̄h , i = 1, 2 . (16)

Introduce the notation Q
(n)
i = V̄

(n)
i − V (n)

i , i = 1, 2 . Similar to (11), using
the mean-value theorem, from (4)–(6) with i = 1 and n = 1 , (7), (9) and

taking into account that Ṽ and V̂ are ordered upper and lower solutions
to (2), we obtain

(Lh1 + c̄1)Q
(1)
1 = (c̄i − ∂f (1)

1 /∂u1)Q
(0)
1 + (∂f

(1)
1 /∂u2)Q

(0)
2 ≥ 0 , p ∈ ωh \ γ ,

(17)

Q
(1)
1 (p) = 0 , p ∈ ∂ωh.

We prove that
(Lh1 + c̄1)Q

(1)
1 ≥ 0 , p ∈ γ .

We check this inequality on γbm. Similar to (17), in the notation Q
(n)
i,m =

V̄
(n)
i,m − V

(n)
i,m , we can get

(Lh1 + c̄1)Q
(1)
1,m = (c̄i − ∂f (1)

1 /∂u1)Q
(0)
1 + (∂f

(1)
1 /∂u2)Q

(0)
2 ≥ 0 , p ∈ ωhm.

From here, (3), (6), (12), (15), the inverse inequalities in (15) for the case

(V
(0)
1 , V̄

(0)
2 ) = (V̂1, Ṽ2), and taking into account that W

(n)
i,m(p) = V

(n)
i,m (p), p ∈
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γbm , i = 1, 2 , it follows that

(Lh1 + c̄1)Q
(1)
1 ≥ (Lh1 + c̄1)Q

(1)
1,m ≥ 0 , p ∈ γbm .

From here and (17), by the maximum principle in Lemma 1, we conclude (16)
for i = 1 , n = 1 . Now, by induction on n, we can prove (16) for i = 1 . In
the same way, we can prove (16) for i = 2 and n ≥ 1 .

From (16), we conclude that the monotonically decreasing and increasing

sequences {V̄ (n)
i }, {V

(n)
i }, i = 1, 2 , are bounded from below and above,

respectively, by any lower and upper solutions, and, hence, are convergent

lim
n→∞

V̄
(n)
i (p) = V̄i(p) , lim

n→∞
V

(n)
i (p) = V i(p) , p ∈ ω̄h.

From here, linearity of Lhi , i = 1, 2 , and continuity of fi, i = 1, 2 , we conclude
that (V̄1, V 2) and (V 1, V̄2) are solutions to (2). This completes the proof of
the theorem. ♠

4 A gas-liquid interaction model

Consider the gas-liquid interaction model where a dissolved gas A and a dis-
solved reactant B interact in a bounded diffusion medium ω. The chemical
reaction scheme is A + κ1B → κ2P and is called a second order reaction,
where κ1 and κ2 are the rate constants and P is the product. Denoting
by u1(x) and u2(x) the concentrations of the dissolved gas A and the re-
actant B, respectively, the above reaction scheme is governed by (1) with
Liui = Di∆ui , fi = σiu1u2 , i = 1, 2 , where Di > 0 , i = 1, 2 , are the diffu-
sion coefficients, and σ1 is the rate constant, σ2 = κ1σ1 . In a more general
reaction scheme called the (l, s)th order reaction, the resulting equations are
given by (1) with

fi(x, u1, u2) = σiu
l
1u

s
2 − qi(x) , i = 1, 2 , (18)
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where l ≥ 1 , s ≥ 1 are constants, σi > 0 , i = 1, 2 , are the rate constants and
qi(x) ≥ 0 , i = 1, 2 , are possible internal sources [4]. The system (1) reduces
to

−Di∆ui + σiu
l
1u

s
2 − qi(x) = 0 , x ∈ ω , ui = gi ≥ 0 on ∂ω , i = 1, 2 .

(19)
The functions f1 and f2 are quasi-monotone nonincreasing in (Rk)+× (Rk)+ .

The nonlinear difference scheme (2) reduces to

Lhi Ui(p) + fi(p, U1, U2) = 0 , p ∈ ωh , Ui = gi on ∂ωh , i = 1, 2, (20)

where fi, i = 1, 2 , are defined by (18) and Lhi , i = 1, 2 , are approximations
of Di∆, i = 1, 2 , on a mesh ω̄h. We assume that the coefficients of the
difference operators Lhi , i = 1, 2 , satisfy (3).

Consider the mesh functions (Ũ1, Û2) = (W1, 0) and (Û1, Ũ2) = (0,W2),
where W1 and W2 solve the problems

LhiWi(p) = qi(p) , p ∈ ωh , Wi(p) = gi(p) , p ∈ ∂ωh , i = 1, 2. (21)

From here, (20) and taking into account that fi = 0 , i = 1, 2 , on (W1, 0) and

(0,W2), we conclude that (Ũ1, Û2) = (W1, 0) and (Û1, Ũ2) = (0,W2) satisfy
conditions (8). By Lemma 1, from (21) we conclude that Wi ≥ 0 , i = 1, 2 .
From the above construction, we conclude that

Ũ(p) = (W1(p),W2(p)) , Û(p) = (0, 0) , p ∈ ω̄h, (22)

are ordered upper and lower solutions of (2).

From (19), we conclude that in {Û(p) ≤ U(p) ≤ Ũ(p)}

∂f1(p, U1, U2)/∂u1 = σ1lU
l−1
1 (p)U s

2 (p) ≤ σ1lW
l−1
1 (p)W s

2 (p) , p ∈ ω̄h,
∂f2(p, U1, U2)/∂u2 = σ2sU

l
1(p)U s−1

2 (p) ≤ σ2sW
l
1(p)W s−1

2 (p) , p ∈ ω̄h.
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From here, it follows that the assumptions in (9) hold true with

c̄1(p) = σ1lW
l−1
1 (p)W s

2 (p) , c̄2(p) = σ2sW
l
1(p)W s−1

2 (p). (23)

Thus, the monotone domain decomposition algorithm (4)–(6) with the
above constructed ordered upper and lower solutions and the coefficients c̄i,
i = 1, 2 , satisfies Theorem 4 for solving the gas-liquid interaction model (19).

4.1 Numerical example

Consider the gas-liquid system (19) in the case of the second order reaction
with l = s = 1 and zero internal sources. From (19), we write down the
two-dimensional test problem in the non-dimensional variables

−
(
∂2u1

∂x2
1

+
∂2u1

∂x2
2

)
+ σ1u1u2 = 0 , (x1, x2) ∈ ω , u1 = 1 on ∂ω,

− µ2

(
∂2u2

∂x2
1

+
∂2u2

∂x2
2

)
+ σ2u1u2 = 0 , (x1, x2) ∈ ω , u2 = 1 on ∂ω,

ω = {0 < x1 < 1, 0 < x2 < 1} , µ2 =
D2

D1

,

where u1 and u2 are the non-dimensional concentrations of the dissolved
gas A and the reactant B, respectively. Since µ2 � 1 , the test problem is
singularly perturbed and u2 has boundary layers, (that is, regions with rapid
change of the solution) near ∂ω of width O(µ).

For the differential operators, we use the central difference approximations
on the five point rectangular stencil, which satisfy (3). We employ a layer
adapted mesh of a piecewise uniform type. The piecewise uniform mesh is
formed by the following manner. We divide each of the intervals ω̄x1 = [0, 1]
and ω̄x2 = [0, 1] into three parts each [0, τ ], [τ, 1− τ ] and [1− τ, 1]. Assuming
that N1 = N2 = N and N is divisible by 4, in the parts [0, τ ], [1 − τ, 1] we
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use the uniform mesh with N/4 + 1 mesh points, and in the part [τ, 1 − τ ]
with N/2 + 1 mesh points. This defines the piecewise uniform mesh in the
x1- and x2-directions. The transition points τ and 1− τ are determined by

τ = min{4−1, µ lnN}.

If the parameter µ is small enough, then the uniform mesh inside of the
boundary layers with the step size hµ = 4τN−1 is fine, and the uniform mesh
outside of the boundary layers with the step size h = 2(1−2τ)N−1 is coarse.
The central difference schemes on the piecewise uniform mesh converge µ-
uniformly to the solution of the test problem.

From (21)–(23), we conclude that

Ũ(p) = (1, 1) , Û(p) = (0, 0) , p ∈ ω̄h , c̄i = σi , i = 1, 2.

We choose σ1 = 2 , σ2 = 1 and δ = 10−5 in the stopping criterion. We
use balanced domain decompositions, where the mesh points are equally
distributed among the main subdomains, and solve all linear systems in the
monotone domain decomposition algorithm (4)–(6) by iccg-method. The
initial guess is

V̄
(0)

1 (p) = 1 , p ∈ ω̄h , V
(0)
2 (p) = 0 , p ∈ ω̄h.

Our numerical results show that for all values of µ and N and all domain
decompositions, the sequence {V̄ (n)

1 , V
(n)
2 } generated by (4)–(6) converges

monotonically to the exact solution of the nonlinear difference scheme. This
confirms the theoretical results in Theorem 4.

For µ ≤ 10−2, the convergence iteration count for the monotone undecom-
posed algorithm with M = 1 is uniform with respect to µ and N and equals
three. Our numerical results show, that if µ ≤ 10−2, then for N and M
fixed, the number of iterations n0, required to reach the prescribed accu-
racy δ, is independent of µ. Table 1, for various values of N and M , gives
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Table 1: Number of iterations n0 for algorithm (4)–(6).

M\N 32 64 126 256 512
4 3 3 3 3 3
8 7 6 5 5 4
16 21 18 15 13 11
32 n.a. 53 44 36 28

the number of iterations n0 for the monotone domain decomposition algo-
rithm (4)–(6). From Table 1, we conclude that for M fixed, the number
of iterations is a monotone decreasing function with respect to the number
of mesh points N . For M ≤ 8 , the numbers of iterations for the mono-
tone domain decomposition algorithm (4)–(6) are almost the same as for
the monotone undecomposed algorithm. The last numerical results are im-
portant in the context of parallel implementation of the monotone domain
decomposition algorithm (4)–(6).
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