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Abstract

The design of gradient coils within Magnetic Resonance Imaging
equipment is considered. These coils produce linear magnetic fields in
each of the three orthogonal directions in physical space. In addition,
they are turned on and off repeatedly to enhance the clarity of the im-
age, but this produces a great deal of noise within the coil, as its shape
distorts under the influence of Lorentz forces. We present a method
for calculating the movement of the coil in the background magnetic
field, and estimating the consequent noise levels. This involves solv-
ing for the current density in the coil coupled with equations for its
elastic deformation, along with acoustic equations for the pressure in
the surrounding air. Winding patterns are designed to minimize the
noise produced by the Magnetic Resonance Imaging coil.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/319
for this article, c© Austral. Mathematical Soc. 2007. Published September 15, 2007. ISSN
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1 Introduction

Magnetic Resonance Imaging (mri) equipment is an important diagnostic
imaging tool in many hospitals. In conventional systems the patient lies
within the cylindrical bore of the mri device, and there are electromagnetic
coils of various types positioned around its cylindrical surface. One set of
windings is responsible for producing a strong homogeneous stationary mag-
netic field, that aligns the magnetic moments of hydrogen nuclei in the body.
Gradient coils are also present, and their function is to add a magnetic field
that varies linearly in each of the three orthogonal directions, so producing
a unique field at each point. Finally, there are radio frequency coils that
serve the dual role of exciting the aligned protons from one quantized state
to a higher one, and then receiving the radio frequency signal emitted as the
protons return to their lower energy state when the signal is removed. Be-
cause the frequency at which the signal is absorbed varies linearly with the
strength of the background field, the physical location of a received signal is
known in advance due to the effect of the gradient coils, which are therefore
frequency encoding devices. Jin [10], Vlaardingerbroeck and den Boer [16]
and Haacke et al. [9] describe the operation of mri equipment.

The design of winding patterns for mri coils is a classical inverse problem,
in the sense that the magnetic field, normally an output quantity, is desired
to be specified in advance over some region within the coil (referred to as
the diameter of the sensitive volume or dsv). The shape of the coil winding
pattern is then to be determined. This is known to be an ill-conditioned prob-
lem, since many different winding patterns could give very similar magnetic
fields over the dsv.

Much has been written on the design of mri coils, and there are various
methods in existence for solving this ill-conditioned problem. Turner [15]
developed an approach based on Fourier transforms, since these provide an
immediate solution to the difficulty of ill-conditioning, although at the cost
of requiring coils that are notionally infinite in length. An optimization
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technique based on simulated annealing was developed by Crozier and Dod-
drell [4] and solved for the current in discrete coils, along with their physical
location. More recently, Forbes and Crozier [6, 7, 8] developed a method
that is essentially an extension of Turner’s target field approach [15], but ac-
counts for finite length coils exactly. This technique treats the coil windings
on the cylinder as equivalent to a continuous current sheet on its surface, and
reduces the problem to a first kind integral equation for the current density
there. This equation is too ill-conditioned to be solved directly, but it can be
solved in a weaker, least squared, sense by minimizing the square of its error
while simultaneously minimizing some other quantity, using a Lagrange mul-
tiplier approach. This technique is known as Tikhonov regularization, and
is discussed by Delves and Mohamed [5]. The choice of the extra (regulariz-
ing) function to be minimized along with the error in the integral equation
is up to the designer, and Forbes and Crozier [8] used a function that effec-
tively minimized the curvature in the coil windings. In this article we instead
minimize the overall coil deflection in order to reduce noise.

The noise generated within a coil has been studied extensively. Chapman
and Mansfield [3] and Mansfield et al. [11] used the concept of balancing the
Lorentz forces on each conductor in the coil with a conductor carrying an
equal but opposite current. They showed that noise reduction of about 10 dB
was possible with this technique, although very high levels of about 130 dB
may nevertheless occur. Finite element techniques were used by Mechefske
et al. [12] to model the deformation of a gradient coil in response to Lorentz
forces, and they showed that their approach gave good agreement with exper-
iments, and produced noise levels between 120 dB and 140 dB. More recently,
Shao and Mechefske [13, 14] used analytical methods to study noise genera-
tion in cylindrical ducts. Here, we develop simplified equations for modelling
coil deflection and the noise it generates, and use analytical methods to min-
imize the overall deflection directly as part of the optimization strategy.
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Figure 1: A sketch of the cylindrical coil and target zones.

2 Mathematical model

Consider a cylindrical duct of length 2L. The z-axis of a Cartesian coordinate
system is located along its axis, so that the coil lies in the interval −L < z <
L . The inner radius of the coil is a, and the primary windings are placed on
this surface. Its outer radius is b = a+h , in which the coil thickness is h, and
shielding windings are located at this radius. For later reference, a midline
radius rM = a + h/2 is also defined, and this coil geometry is illustrated in
Figure 1. The material properties of the coil are its Young’s modulus E and
its Poisson’s ratio ν.
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For simplicity, the spherical dsv is replaced here with a cylindrical region
of interest positioned co-axially with the coil but located asymmetrically with
respect to its length, over some interval pL < z < qL with −1 < p < q < 1 .
The desired target magnetic field is specified over this cylinder, which is taken
to have radius c1 as shown in Figure 1. For increased accuracy, the field is
also prescribed on an inner target cylinder of radius c2 ( < c1). When a shield
winding is also present on the outer surface r = b of the coil, then a third
target cylinder of radius c3 ( > b) is also employed, and the intention is to
make the magnetic field drop to zero on that outer surface. It is convenient
to make use of cylindrical polar coordinates (r, θ, z) defined according to
x = r cos θ and y = r sin θ , and these will be used from now on.

The component of the magnetic field H that is of the greatest interest is
the axial component HZ directed along the z-axis. According to the Biot–
Savart law [9, p.828], this is

HZ(r, θ, z) =

− a

2π

∫ L

−L

∫ 2π

0

[
r cos(θ′ − θ)− a

]
jPθ(θ

′, z′)[
a2 + r2 − 2ar cos(θ′ − θ) + (z′ − z)2

]3/2 dθ′ dz′
− b

2π

∫ L

−L

∫ 2π

0

[
r cos(θ′ − θ)− b

]
jSθ(θ

′, z′)[
b2 + r2 − 2br cos(θ′ − θ) + (z′ − z)2

]3/2 dθ′ dz′ . (1)

Here, the source points (a, θ′, z′) and (b, θ′, z′) lie on the inner and outer
surfaces r = a and r = b of the coil, and the field point is (r, θ, z). We
assume in the derivation of equation (1) that current flows on both sides of
the conducting elements on each surface.

The current density jP (A/m) on the primary r = a may be expressed as
jP = jPθeθ + jPZez with components jPθ and jPZ in the azimuthal and axial
directions, respectively. In steady state operation, the continuity equation is
divjP = 0 , and it follows at once from a vector identity that

jPθ =
∂ψP
∂z

, jPZ = −1

a

∂ψP
∂θ

, (2)
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in which ψP (θ, z) is a streamfunction on the primary coil. Similar equations
to (2) apply on the shield coil at r = b , and involve current density com-
ponents jSθ and jSZ and a streamfunction ψS(θ, z) on that surface. As the
axial current density components jPZ and jSZ are required to be zero at each
end z = ±L of the coil, it follows that the streamfunction on the primary
coil must take the form

ψP (θ, z) = −
N∑
n=1

2L

nπ
P P

0n cos

(
nπ(z + L)

2L

)

+
M∑
m=1

N∑
n=1

2L

nπ

[
P P
mn cosmθ +QP

mn sinmθ
]

sin

[
nπ(z + L)

2L

]
. (3)

The integers M and N in equation (3) are chosen to be suitably large. A
similar equation to (3) exists for the streamfunction ψS on the shields, except
that the two sets of primary coefficients P P

mn and QP
mn are replaced with cor-

responding shield coefficients P S
mn, QS

mn. As yet, these four sets of coefficients
are unknown, and an algorithm for determining them will be outlined in sec-
tion 3. Equally spaced contours of each streamfunction then correspond to
actual winding patterns on each coil, as shown by Brideson et al. [2].

The deflection of the coil is represented by the vector u = uRer + uθeθ +
uZez , and the equations of linearized elasticity at steady state become

1

h

(
j×B

)
+ (Λ +G)∇(∇ · u) +G∇2u = 0 . (4)

In this equation (4), Λ = νE/[(1 + ν)(1 − 2ν)] and G = E/[2(1 + ν)] are
Lamé coefficients involving the Young’s modulus E and Poisson’s ratio ν of
the coil material. The vectors j and B represent the total current density on
the coil and the magnetic induction field, and their vector product in equa-
tion (4) is the Lorentz force on the coil. This equation can be derived using
results by Boresi and Chong [1]. It is now assumed that the radial deflec-
tion component uR is the dominant one, so that the simple scalar differential



2 Mathematical model C23

equation
1

r2
M

∂2uR
∂θ2

+
∂2uR
∂z2

− uR
r2
M

= −∆0

(
jPθ + jSθ

)
(5)

is obtained, in which the constant ∆0 = 4(1 + ν)BZ0/(Eh) , and BZ0 is
the z-component of the stationary magnetic induction field produced by the
‘permanent’ electromagnets in the mri device. Equation (5) is assumed to
hold on the coil centre plane shown in Figure 1. The current density compo-
nents jPθ and jSθ are computed from equations (2) and (3).

The air pressure pA within the coil 0 < r < a is calculated using the
standard wave equation,

∂2pA
∂t2

= c2A∇2pA = c2A

[
1

r

∂

∂r

(
r
∂pA
∂r

)
+

1

r2

∂2pA
∂θ2

+
∂2pA
∂z2

]
, (6)

that comes from linearized acoustic theory. Here, the wave speed cA has
a known value (and may also be computed using the ideal gas law). We
assume that the coil moves quasi-statically; that is, its motion due to the
changing current in the coil windings is slow by comparison with the time
taken for elastic waves to propagate in the material. As a consequence, the
coil is considered to pass through a sequence of steady states as it deflects
under the effect of the Lorentz forcing. We assume that the radial component
of the deflection of the coil varies with time t according to some switching
function fS(t), so that the boundary condition for equation (6) on the inside
wall of the coil is

∂pA
∂r

= −ρA0f
′′
S(t)uR(θ, z) on r = a , (7)

and initial conditions for the pressure in the coil are taken simply to be pA = 0
and ∂pA/∂t = 0 at t = 0 . The constant ρA0 in equation (7) represents the
mean air density in the coil. The switching function fS(t) describes how the
coil walls move with time, and so it determines the air pressure inside the
primary. It is assumed to have a continuous second derivative for t > 0 .
Once the air pressure has been calculated from equations (6) and (7) and
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using the coil deflection function uR obtained from equation (5), the sound
pressure level in decibels is

spl = 20 log10

(
|pA|/pref

)
. (8)

The reference pressure pref = 2× 10−5 N/m2 .

3 Outline of solution technique

The Biot–Savart law (1) is normally used to calculate the magnetic field HZ

for given current densities in the coil. Here, however, we solve the inverse
problem, in which desired ‘target’ magnetic fields H

(1)
TZ , H

(2)
TZ and H

(3)
TZ = 0 are

specified in advance at the three target radii c1, c2 and c3 shown in Figure 1.
Equation (1) is then solved as an integral equation for the two current density
components jPθ and jSθ. However, this is a highly ill-conditioned problem,
and cannot be solved directly. Instead, we minimize the total regularized
residual error

R = E1 + E2 + E3 + λ1F1 + λPFP + λSFS , (9)

in which the three functionals

Ek =

∫∫ [
H

(k)
TZ −HZ(ck, θ, z)

]2
dS , k = 1, 2, 3 , (10)

are the total squared differences between the target field and the calculated
field, with the integrals evaluated over the three cylindrical target surfaces
shown in Figure 1. The three constants λ1, λP and λS are regularizing
parameters. They play a role similar to that of Lagrange multipliers in
constrained minimization problems, except that here their value is not known
in advance, and must be determined empirically. The first penalty function
in equation (9) is chosen to be

F1 =

∫ L

−L

∫ π

−π
u2
R(θ, z) dθ dz , (11)
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and represents the total squared coil deflection. The other two quantities are
smoothness penalty terms

FP =

∫∫
r=a

‖∇2ψP‖2 dS , FS =

∫∫
r=b

‖∇2ψS‖2 dS , (12)

evaluated over the primary and the shield, respectively. Minimizing these
quantities produces coil winding patterns with minimal curvature.

The residual error (9) is minimized with respect to the unknown Fourier
coefficients by requiring that

∂R

∂P P
jk

= 0 ,
∂R

∂P S
jk

= 0 , j = 1, . . . ,M , k = 0, 1, . . . , N ,

∂R

∂QP
jk

= 0 ,
∂R

∂QS
jk

= 0 , j = 1, . . . ,M , k = 1, . . . , N, . (13)

This system (13) is a linear matrix set of equations for the unknown coef-
ficients P P

mn, QP
mn and P S

mn, QS
mn and may be solved in a straightforward

manner. There are computational efficiencies available that allow the block
structure of the system to be exploited, giving savings in computer time, but
these are not be detailed here. We make use of closed form solutions for the
radial coil deflection function uR in equation (5) and the air pressure pA in
equations (6)–(7) (obtained using Laplace transforms). This gives additional
savings in computer time.

4 Presentation of results

Results are illustrated briefly in this section, for a model coil of half-length
L = 0.5 m and inner radius a = 0.2 m. Its wall thickness is taken to be
h = 0.015 m (15 mm), and its Young’s modulus and Poisson’s ratio are E =
1.3 × 1010 N/m2 and ν = 0.2 , respectively. The background constant axial
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field is taken to be BZ0 = 2 Tesla and the gradient coil is assumed to produce
a maximum magnetic field Hmax = 1.59 × 104 A/m (corresponding to an
induction field of 0.02 Tesla). The inner target region (illustrated in Figure 1)
is very asymmetrically positioned, with parameters p = −0.7 and q = 0.1 .
The two inner target radii are c1 = 0.15 m and c2 = 0.075 m. For simplicity,
we consider a coil switching function fS(t) that represents the current being
turned on in some switching time τS. This is accomplished by setting fS = 0
for t < 0 and fS = 1 for all t > τS . In order that f ′′S(t) should be continuous,
we choose fS(t) to be a cubic spline function in the interval 0 < t < τS .

To begin, we consider an x-gradient coil, so that in polar coordinates, the
two inner target fields are

H
(1)
TZ = Hmax cos θ , H

(2)
TZ = Hmax(c2/c1) cos θ . (14)

Figure 2 shows the winding pattern on the primary coil, for an x-gradient
coil designed with regularization parameter λ1 = 1017 . This value was chosen
after careful experimentation, and represents about the optimum trade-off
between being able to reproduce the target fields (14) faithfully on the one
hand, and reducing the acoustic noise on the other. The large value of
this parameter is necessary to compensate for the very small value of the
constant ∆0 in equation (5) that determines the size of the coil deflections.
The two smoothing parameters were chosen to be λP = λS = 10−12 . The
dashed lines in the figure indicate windings with the current reversed. In
Figure 2, the azimuthal angle θ is plotted on the horizontal axis, so that
the diagram may be considered to be wrapped around the surface of the
cylinder r = a . Winding patterns on the shield at r = b are similar to
those in Figure 2 and so are not shown here, although the current direction
is opposed so as to cancel the fields external to the coil.

The deflection caused to the coil by Lorentz forces is shown in Figure 3,
for the design illustrated in Figure 2. For ease of visibility, the deflections
have been multiplied by 104, so that the coil shape shown is actually the
surface r = a+ 104uR for some time t > τS . Clearly the greatest deflections
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Figure 2: Winding pattern for an x-gradient coil of thickness h = 15 mm,
for the primary at r = a . Dashed lines indicate reversed windings.
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Figure 3: The coil shape in response to Lorentz forces, for the x-gradient
coil in Figure 2. Displacements have been magnified by a factor of 10,000 for
ease of viewing.
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Figure 4: Sound pressure level (in decibels) as a function of time, for an
un-optimized coil (dashed line) and the optimized coil in Figure 2 (solid line).
The coil thickness is 15 mm and the switching time is 1 ms.

occur in the asymmetrically located target region (at the left end of the
coil), as a result of which the coil undergoes an overall lateral displacement
towards the negative x-direction. Smaller deflections also occur at the end of
the coil further from the target region, but these appear to be more circularly
symmetric.

Figure 4 gives a comparison between the noise levels produced by two
different coils designed with regularizing parameters λ1 = 10 and λ1 = 1017 .
The first of these is effectively not optimized with respect to noise level,
whereas the second case, illustrated in Figures 2 and 3, represents optimal
conditions. Sound levels were computed using equation (8), and are shown at
the point (r, θ, z) = (c1, 0, (p+ q)L/2) at the mid-point on the outer surface
of the inner target regions shown in Figure 1. In each case, the switching
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time is τS = 10−3 s (1 ms). Time t is shown on the horizontal axis, and
the vertical scale gives the sound pressure level in decibels. The dashed line
shows the noise history of the un-optimized coil and indicates a peak level
of 116 dB. The solid line corresponds to the acoustic noise produced by the
optimized coil, and shows peak noise levels of 111 dB. Thus the optimized
coil of Figures 2 and 3 results in a reduction of 5 dB in overall noise level.

We conclude this section with a brief discussion of a z-gradient coil, for
which the two inner target fields have the forms

H
(1)
TZ = H

(2)
TZ =

2Hmax

(q − p)

[
z

L
− p+ q

2

]
. (15)

These fields (15) have similarly been used to design coils optimized for noise,
although space is insufficient here to discuss these in detail. For these coils,
the winding patterns consist of circular loops of wire around the cylinder, on
planes orthogonal to the coil axis.

We illustrate the deflection caused by a z-gradient coil, optimized for min-
imum noise production, in Figure 5. The displacements are again magnified
by a factor of 104 for ease of viewing, so that the surfaces shown represent
graphs of r = a + 104uR . However, unlike the x-gradient coil in Figure 3,
the coil here retains circular symmetry as the windings are simply arranged
circularly around the cylinder.

5 Conclusion

A method has been presented for computing the deflection of a cylindri-
cal gradient coil due to Lorentz forces, and estimating its noise production.
Tikhonov regularization helps design coils that reduce noise by minimizing
the coil deflection. Nevertheless, it is typically found that only about 5 dB
noise reduction is achieved by these designs (recalling, however, that the noise
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scale in Equation (8) is logarithmic). It is possible to reduce noise further by
increasing the coil thickness h, as expected, although this is ultimately lim-
ited by practical design considerations. Our analysis assumed that the coil
deflection is mainly radial, although the results, such as in Figure 3, suggest
that other displacement modes might also usefully be considered. This is left
for future work.
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