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Stochastic programming to evaluate renewable
power generation for small-scale desalination
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Abstract

Due in part to an increasing population and climatic change, fresh
water demand is rapidly outpacing fresh water supply. In Australia
desalination plants are already used to obtain fresh water from brack-
ish water and seawater, but they have high energy requirements. Solar
collectors could provide power, but solar irradiance is variable and de-
salination plants work most efficiently with constant power. We model
a system of photovoltaic arrays and storage batteries. Daily solar in-
tensity and water demand are stochastic. A stochastic linear program
finds the optimal blend of water from available sources—groundwater,
desalination and stormwater—to meet daily demand. The optimal use
of a given size of solar irradiance collection system is found by stochas-
tic dynamic programming. Long term net benefits are obtained as a
function of the system size.
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1 Introduction

People living in arid and semi-arid Australia frequently face a shortage of
potable water. But remote communities, national parks, stations and islands
often have access to saline groundwater or sea water, along with abundant so-
lar energy. These locations are generally not connected to the electricity grid
and researchers are investigating autonomous systems of desalination mod-
ules powered by renewable energy for such locations. Investigations include
pilot projects in Australia [6] and the Mediterranean region [1], and math-
ematical models of renewable powered desalination plants to simulate their
operation [4, 5]. Both practical and mathematical models aim to provide
guidance for system sizing and efficient operational strategies. The poten-
tially useful technique of stochastic programming has been used to analyse
both short term and long term planning issues in the allied arena of the
deregulated electricity market [3]. However, it has not been used in decision
making for renewable power generation for small scale desalination systems.
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We describe a mathematical model of a solar energy powered, reverse
osmosis desalination plant using stochastic programming to assess system
sizing, operating rules and longer term objectives of water production. The
plant comprises a photovoltaic (PV) array connected to an energy storage
system of batteries and to two desalination modules that can be run inde-
pendently of each other. A stochastic dynamic programming (SDP) algorithm
finds the optimal policy for the allocation of energy flows from the pv array
while meeting typical plant operating conditions. Results from the SDP are
an input to a stochastic linear program (SLP) which matches water demand
to supply at lowest cost while meeting availability and salinity constraints.

2 Stochastic dynamic program

The sDP algorithm uses transition matrices whose entries, p;;(k), which de-
pend on a decision k, are the probability of moving between states of the state
space, and a reward matrix whose entries, r;;(k), are the value obtained by
making a particular transition under decision k. Let ¢ € {1,2,...,m} repre-
sent the states of the system. For our model, m = 18. Let t € {0,1,...,T}
be discrete one hour time periods. The policy iteration procedure is imple-
mented in two parts: value determination and policy improvement [2]. For a
given policy, total expected earnings over the remaining time steps at time ¢
depends on the state, i, at time ¢, and is written v;(7). For a given policy,
total expected earnings is calculated recursively as

v (i) = Z pijlrij +vea (7)), forj=1,...,m. (1)

all states j

For large t,
v(i) = g + vy (4)
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where ¢ is the expected return per period. Substituting into (1) gives the set
of equations making up the value determination step:

g+v(i)zzpijrij+zpijv(j>7 1=1,...,m. (2)
J J

These equations are solved for g and v(2) up to v(m) with v(1) being arbi-
trarily set to 0 in order to obtain a solution for the under determined system.
The policy improvement step maximises for all states ¢

S H 0 () + 3wl R)i) 3

The algorithm starts with an arbitrary policy and continues until the policies
produced on two successive iterations are identical.

Model assumptions

We assume that the process of desalination requires a desalination module
to be run for two hours to produce a unit quantity of desalinated water, and
that a module run for one hour produces no potable water. This assumption
recognises that for efficient operation of reverse osmosis modules, the water
pressure and the brine to feedwater ratio in the modules must be carefully
regulated to ensure the quality of the water produced, to manage and dispose
of the brine stream, and to minimise scaling of membrane surfaces. We
assume that a module uses one unit of energy per hour when running.

2.1 Defining the state space

The time step of the model is one hour, a period of similar scale to the
desalination process, avoiding excessive start/stop operations but allowing
the system to take advantage of favourable conditions. The time scale could
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be altered if there is evidence that this is necessary. We specify discrete
states for each desalination module of {0, 1,2}, where state '0’ represents the
module being unused, state "1’ represents the module having completed the
first hour of the desalination process, and state '2’ represents the module
having completed the second hour of the desalination process. We specify
discrete states for the storage level of the battery assemblage and assume
the assemblage has a storage capacity of B, so that b € {0, B} represents
the number of recoverable units of energy held in storage. For the initial
formulation of the problem we set the states of the battery assemblage to
be {0,1}. Thus storage capacity is one unit and we assume that excess
energy cannot be used in this application.

The state space of the problem is made up of triplets, (m; mgb), where
my € {0,1,2} records the state of module 1, my € {0, 1,2} records the state
of module 2, and b € {0, 1} records the state of the battery storage. There
are three possible states for each desalination module and two for the battery
assemblage, giving 18 combinations. The state space of the problem, in the
order arbitrarily chosen here, is

{(000), (010), (020), (001), (011), (021), (100), (110), (120),
(101), (111), (121), (200), (210), (220), (201), (211), (221)}.

We consider three decisions, k € {0, 1,2} (Figure 1): 0, run no desalina-
tion modules; 1, run one desalination module only; 2, run both desalination
modules.

A decision is made at hourly intervals at the beginning of a time period in
the knowledge of the state of the system and the probability of energy inflows
for the next hour. The decision is made for the time period immediately
following and energy flows during that time period are directed according to
the decision.

Energy inflows from the PV array are stochastic and we model inflow
amounts to be compatible with the discrete quantities of the state space.
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Thus, the Pv array will supply 0, 1 or 2 units of energy in an hour with
probabilities pg, p1 and p, respectively. Possible transitions between states
depend on the decision made and on the following conventions for energy use
which aim to reproduce likely operational procedures.

e Energy from the PV array is first directed to any desalination module
that is running and then to the storage system. Excess energy cannot
be used in this application.

e If there is a choice between using a unit of energy for running one desali-
nation module for a first hour or directing that energy to running one
desalination module for a second hour, then the latter action is taken.

e [f one module has been idle while the other has just completed a two
hour run and a decision is taken to run one module, then the idle
module is selected.

e If both modules have just completed a one hour run or a two hour run
and a decision is taken to run one module, then the module represented
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by the first element of the state space triplet is selected.

We illustrate the calculation of the entries of the transition matrices.
Decision 2 is to run two desalination modules. In state (000), for example,
neither module has been in use in this time step and no energy was stored.
A decision is taken to run two modules. With probability py, no energy is
available from the Pv array during the current time step, the desalination
process is halted and the system remains in state (000). With probability p,
one unit of energy is obtained through the PV collectors and the system moves
from state (000) to state (100). With probability ps, the system moves to
state (110).

A cost of r is incurred when a desalination module is run for up to one
hour. The cost includes pretreatment of the feedwater such as screening
and filtering, chemical treatment of cations and storage of cleaned feedwater.
The cost also includes backflushing and eventual replacement of membranes,
disposal of brine and storage of the product. A benefit of r is assigned for
completing the first hour of desalination. Thus a transition to state (100),
say, has a reward of —r +r = 0. A benefit of 2r is obtained for completing
the second hour of desalination. Thus an eventual transition to state (200),
say, has a reward of —r + 2r = r. Any decision taken is implemented at the
beginning of a time step. If a decision is taken to run a module but there
is insufficient energy to complete the run, the cost of running the module
is incurred without any benefit, thus the reward is —r per module started.
The net result of this is that an overall benefit of r accrues if a desalination
module completes two hours of running and an overall loss (benefits minus
costs) of r accrues if the module is run and fails to complete one hour or fails
to complete two hours.
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2.2 Solar irradiance input to the system

We characterise energy levels in the system as being of 0, 1 or 2 units where
an energy level of 0 units is insufficient to run a desalination module for one
hour, a level of 1 unit is sufficient energy to run one desalination module for
one hour, and a level of 2 units is sufficient to run one desalination module
for two hours. We use a 38 year data record to characterise energy input to
the PV array and model solar irradiance for January and July—potentially
the months of greatest and least solar energy. Average hourly direct beam
solar insolation for Adelaide for the period from 6 am to 6 pm in January and
8am to 4pm in July has a similar distribution of intensity for each hour,
and so we aggregated the data to represent a typical hour’s insolation for
these two periods (Figure 2). We set the ranges of solar irradiance that
constitute 0, 1 or 2 units of energy as: 0 units for solar irradiance between 0
and 150 Whm~2; 1 unit for solar irradiance between 150 and 450 Whm~?;
and 2 units for solar irradiance between 450 and 1150 Whm~=2. Thus the
probabilities of irradiance amounts within the three ranges of direct beam
solar irradiance falling on a dual-tracking Pv array are, for January 6am
to 6pm, 0.15, 0.21 and 0.64 respectively, and, for July 8am to 4 pm, 0.37,
0.30 and 0.33 respectively. We assume that the energy produced by the pv
array is a linear function of solar irradiance but a more detailed model would
include the degradation of array performance at higher temperatures [5].

2.3 Optimal policies

A policy specifies a decision for each state of the system. We write a policy as
a vector with the elements of the vector representing the states of the system
in our chosen order and the entries of the vector as the respective decisions.
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FIGURE 2: Direct beam solar insolation at Adelaide for daylight periods:
(a) January, 6 am to 6 pm; and (b) July, 8am to 4 pm.

July, 8 am—4 pm

SDP analysis gives an optimal policy of
010111111121010111].

There is one state in which it is optimal to run both modules simultaneously,
but, under the optimal policy, the system cannot reach this state. In sum-
mary, the operating rules under this policy are: if a desalination module has
just completed the first hour of the process, run it for the second hour; if
both modules are available and there is energy in storage, start one module;
else, run no modules. Taking this latter decision means, in practical terms,
that any incoming energy is used to build up stored energy.

The average, long term, desalinated water production under this policy
is 0.31 units per hour. Note that either one or no module is run in any time
step and thus the plant is under utilised.
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January, 6 am—6 pm

SDP analysis gives an optimal policy of
111121121222111121].

The operating rules under this policy are: run at least one desalination mod-
ule in any state; run two modules if one of the modules has just completed its
first hour of desalination and the system has stored energy, and if both mod-
ules have just completed their first hour of desalination but with no energy
in storage.

The average, long term, desalinated water production under this policy
is 0.70 units per hour. At least one desalination module is run at each time
step and thus the system is utilised more fully under this policy. The hourly
desalinated water production in July is approximately 44% of hourly produc-
tion in January. However, due to the longer period of daylight and thus the
extended operational time in January, daily desalinated water production in
July is approximately 30% that of January.

Expanded storage states

During the design phase of a photovoltaic system particular attention is given
to deciding on the relative sizes of the solar collector array and an energy
storage system. For example, sufficient storage capacity may be provided
to run a plant at its average production rate for one to two days without
external energy input. As an extension to our basic model, we expand the
state space by doubling potential storage capacity, so that the states of stored
energy are {0, 1,2}. The state space for the problem is now

{(000), (010), (020), (001), (011), (021), (002), (012), (022),
(100), (110), (120), (101), (111), (121), (102), (112), (122),
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(200), (210), (220), (201), (211), (221), (202), (212), (222)}.

Rewriting transition and reward matrices to follow model assumptions
and conditions as before and conducting SDP analysis gives an optimal policy
for July, 8am to 4 pm of

000111121000111222000111121],
and an optimal policy for January, 6 am to 6 pm is

010111222111121222010111222].

The average, long term, desalinated water production for July is 0.38 units
per hour while that for January is 0.72 units per hour. Thus extra energy
storage increased water production by 23% during July and by 3% in January.
Thus, system sizing is adequate for January but added storage capacity could
increase water production during July. Note that water demand may be lower
in July.

3 Stochastic linear program

We consider daily household and agricultural demands for water for a small
community in January. Household use includes cooking, drinking and wash-
ing while agricultural use includes drinking water for stock and irrigation of
food crops. We consider three sources of supply of water: rainfall as stochas-
tic; a low salinity source of groundwater as deterministic; and output from
the desalination plant also as stochastic. The triangular distribution for de-
salinated water production is suitable for such a process where the maximum,
minimum and most likely values are known. The gamma(49,7) distribution
produces random rainfall that satisfies, on average, one third of demand.
Demand is modelled as a bivariate normal distribution for household and
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TABLE 1: Water characteristics of sources and sinks

source rain ground desal
availability (units) ~gamma(49,7) up to 9 ~triang(0,12)
salinity (mg/1) 100 1500 500
sink household agricultural
demand (units) (correlation = 0.6)  ~N(1.5,0.2%)  ~N(15,1.2?)
maximum salinity (mg/1) 500 900

agricultural uses with average agricultural demand ten times that of house-
hold demand. These are positively correlated to reflect similar patterns of
demand from both uses during similar climatic conditions (Table 1).

Let r, g and d represent the sources of rain, ground and desalinated
water, respectively. Let h and a represent the demand sites of household and
agricultural use. Let z;; be the amount of water supplied from source ¢ to
demand site j and c;; be the cost of such supply. We write the quantity of
water available from source ¢ in a given time step as avail;, the demand at
site j as dem;, and the salinity conditions of the sources and demand sites
as sal; and sal; respectively. The linear program is

min Z Cij Lij,
]
such that inj > dem; forj=h,a,
i

inj < avail; fori=rg,d,
J

sal; x;: ;) <sal; for j=h,a,
(Rsatizy) /(L) < sl

7

The program is run multiple times to simulate demand and supply for the
application, with the algorithm sampling from probability distributions each
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TABLE 2: Percentage use of source rain, ground, desal for varied cost of
desalinated water

cost structure  r g d
1,0.5,5 90 100 15
1, 0.5, 2.5 86 100 30
1,0.5, 1 53 100 40

time to generate values for the stochastic variables. Results in Table 2 show
that use of desalinated water is price sensitive as would be expected. For
the three scenarios of cost structure, supply fails to meet salinity conditions
on approximately 3% of occasions. Desalinated water supplies are not fully
used even when priced equal to rainwater.

If we suppose mean rainfall supplies only one quarter of January demand,
then use of desalinated water increases. For a cost schedule of 1, 0.5, 5
approximately 57% of desalinated water is used, compared to 100% and 90%
of ground and rain water. However this scenario also sees an increase to
approximately 11% in the frequency of failure to supply water of acceptable
quality—a rate that may be unacceptable.

4 Conclusions

Stochastic dynamic programming determines efficient operating strategies for
the use of energy inflows for an autonomous, solar energy powered, reverse
osmosis desalination system. The analysis evaluated system sizing and cal-
culated expected water production. Results from the SDP were input to a
stochastic linear program which assessed the contribution desalinated water
might make to meeting demand in a small community. It could be worth-
while extending this analytic approach of assessing an intended installation
using actual data. An improvement in the model would be to couple its two
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parts so that the percentage use of desalinated water in the SLP influences
the reward for producing water in the SDP.
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