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Analysis of a model for ethanol production
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Abstract

We investigate an experimentally verified model for the production
of ethanol through continuous fermentation. Previous studies inves-
tigated this model using direct integration. Such integration is time
consuming as parameter regions of interest can only be determined
through laborious and repetitive calculations. Using techniques from
nonlinear dynamical systems theory, in particular a combination of
steady state analysis and path following methods, practical insights
into operating strategies are found. We use the performance of the
reaction scheme in one tank as a benchmark for comparing the per-
formances of multiple tanks.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/322
for this article, c© Austral. Mathematical Soc. 2007. Published October 15, 2007. ISSN
1446-8735

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/322


Contents C86

Contents

1 Introduction C86

2 Governing equations C87

3 Results C89
3.1 Washout conditions . . . . . . . . . . . . . . . . . . . . . . C89
3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . C90

4 Conclusions C95

A Nomenclature C96

References C97

1 Introduction

The search for alternative fuels which are both economically and environmen-
tally viable is of great current interest. One of the proposed fuel alternatives
is ethanol, which can be produced from many sources including wood chips,
corn husks and other agricultural waste products. Using ethanol instead
of gasoline will reduce carbon emissions by more than 80% and will reduce
overall gasoline consumption by 30% [7]. We investigate a model for the pro-
duction of ethanol through continuous fermentation. Ethanol productivity
can be increased up to four fold when ethanol is produced using continuous
fermentation, compared to other methods such as centrifuges and settling
tanks [2, 3].

We analyse a model for ethanol production that was proposed by Jarzeb-
ski [6], which is an extension of the model by Ghommidh et al. [1]. The
model contains five variables representing the various cell, ethanol and sub-
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strate concentrations. The biochemical parameters were estimated from ex-
perimental results [8]. The model was analysed using a selection of different
flow rates and substrate concentration of the feed using direct numerical in-
tegration. This approach is time consuming as parameter regions of interest
can only be determined through laborious and repetitive calculations. More
importantly, crucial regions of parameter space (in terms of optimal perfor-
mance) can easily be missed by using this approach. Using techniques from
nonlinear dynamical systems theory, in particular a combination of steady
state analysis and path following methods, practical insights into operating
strategies are found.

Our analysis shows that, although the system can exhibit interesting be-
haviour such as oscillatory states and period doubling, the performance of
the system is nevertheless optimised by operating in a steady state regime.

2 Governing equations

The production of ethanol is modelled using the scheme by Jarzebski [6].
This model assumes that the tank is well mixed and there is no recycle. The
cell populations are broken into three groups: viable cells (Xv), non-viable
cells (Xnv) and dead cells (Xd). Non-viable cells are non-growing, but still
retain the ability to produce ethanol. The biological reactions are

S → P ,

Xv → 2Xv ,

Xv → Xnv ,

Xv → Xd ,

Xnv → Xd,

where S and P represent the substrate and ethanol respectively. The second
reaction denotes viable cell division. In a single reactor, ethanol production
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is modelled using five odes:

V
dXv

dt
= −FXv + V (µv − µnv − µd)Xv , (1)

V
dXnv

dt
= −FXnv + V (µnvXv − µdXnv) , (2)

V
dXd

dt
= −FXd + V µd(Xv +Xnv) , (3)

V
dP

dt
= −FP + V

(
µvXv

Yx|p
+mpXnv

)
, (4)

V
dS

dt
= F (S0 − S)− V

(
µvXv

Yx|s
+msXnv

)
, (5)

where F is the flow rate into the tank, V is the volume of the tank, m is
the maintenance factor, Y is the yield coefficient and S0 is the substrate
concentration in the feed. Note that the maintenance terms, involving mp

and ms in (4) and (5), do not appear in (2) as this process does not consume
or produce non-viable cells, but produces ethanol and consumes substrate
respectively. All other parameters are defined in the nomenclature in Ap-
pendix A. We assume that there is only substrate in the feed. The growth
rates, which account for product inhibition and substrate limitation, are given
by Jarzebski [6], which are variations of the growth rates given by Ghommidh
et al. [1]:

µv = µmax
S

K1 + S

(
1− P

Pc

S

K2 + S

)
,

µd = −µmax
S

K1 + S

(
1− P

Pc

S

K2 + S

)
,

µnv = µ′max

S

K1 + S

(
1− P

P ′c

S

K2 + S

)
− µv .

All reaction rates are assumed to be non-negative. If the concentration of
any chemical species is such that a reaction rate would be negative, that rate
is then reset to zero [1].
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3 Results

Numerical results were obtained using the path following software Auto [4].
In the corresponding figures, the standard notation is used: solid and dashed
lines represent stable and unstable steady states respectively, squares are
Hopf points (that is, the points where oscillatory solution branches emanate
from the steady state solution), and open and solid circles represent unstable
and stable periodic solutions respectively. For periodic solutions, the norm
chosen is the integral over the period of the solution.

We investigate behaviour of the system as a function of the residence
time, τ = V/F , and substrate concentration in the feed, S0. Note that
the dilution rate D = F/V was used by Jarzebski [6], the reciprocal of the
residence time. The case D = 0.089 h−1 (τ = 11.24 h) and S0 = 138 gl−1 was
used to estimate the biochemical parameters from the experimental data. For
a dilution rate of D = 0.05 h−1 (τ = 20 h) the system was shown to exhibit
both steady state and oscillatory behaviour for feed substrate concentrations
of 138 gl−1 and 160 gl−1, whereas the system only possessed steady state
solutions for 100 gl−1.

3.1 Washout conditions

In any biochemical system the washout solution must be avoided. Washout
corresponds to a steady state where concentration of substrate in the influent
is equal to that in the effluent. The washout steady state solution to (1)–(5)
is

Xv = Xnv = Xd = P = 0 and S = S0 .

The stability of the washout steady state solution is determined by the eigen-
values of the corresponding Jacobian matrix. Before proceeding, we first
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examine the reaction rates. In the washout state we have

µv =
µmaxS0

K1 + S0

, µd = − µmaxS0

K1 + S0

, µnv =
S0

K1 + S0

(µ′max − µmax) .

Thus the value for µd has to be set to zero. The value of µnv depends on µ′max

and µmax. From experimental values [8], we have µmax > µ′max and so µnv is
also set to zero. The eigenvalues of the Jacobian matrix are λi = −1/τ < 0 ,
i = 1, 2, 3, 4 , and λ5 = µmaxF − 1/τ where F = S0/(K1 + S0) . The washout
state is therefore stable when

τ <
1

µmaxF
=

1

µmax

(
1 +

K1

S0

)
. (6)

This corresponds to 4.12 h for a feed substrate concentration of 100 gl−1

and 4.075 h for a feed substrate concentration of 160 gl−1. It can be shown
that when µmax ≤ µ′max , the washout solution is stable if

τ <
1

(2µmax − µ′max)F
.

3.2 Numerical results

We first consider the case when the feed substrate concentration is 100 gl−1.
Figure 1 shows there are no periodic solutions, but there are regions of static
bistability, corresponding to low and high viable cell concentrations (Xv).
Starting from a zero residence time, the system is in the washout state un-
til a residence time of 4.12 h is reached. For τ > 4.12 , viable cells and
ethanol are produced and the substrate concentration begins to diminish.
When the residence time is increased to 6 h, non-viable cells start to be pro-
duced, which decreases the number of viable cells. There is also another
region of bistability for large residence times, where the viable cells are in
abundance. This figure demonstrates the advantage of using path following
methods as it would be difficult to find all these interesting dynamics if only
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Figure 1: Steady state diagrams for (a) Xv (b) Xnv (c) P and (d) S as a
function of τ when S0 = 100 gl−1.

direct numerical integration is utilised. The maximum ethanol concentration
is P = 45.25 gl−1, when the residence time is τ = 13.93 h (see Figure 1c).
The performance of chemical reactors is often characterised by the reactor
productivity at the outlet,

Pr =
P

τ
.

Figure 2 shows the productivity as a function of the residence time. The
optimal productivity is Pr = 3.8 gl−1h−1 which occurs at a residence time
τ = 7.47 h. Although the maximum ethanol concentration is P = 45.25 gl−1,
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Figure 2: Productivity, P/τ , versus residence time for S0 = 100 gl−1 .

when τ = 13.93 h, the productivity obtained at this operational condition is
only 3.25 gl−1h−1, about 15% less than the maximum value.

Jarzebski [6] stated that periodic solutions can occur at increased feed
substrate concentrations. As mentioned earlier, periodic solutions emanate
from the Hopf point, and therefore it is useful to determine the Hopf locus.
The location of Hopf points is shown in Figure 3 as a function of the feed sub-
strate concentration and residence time. From Figure 3 the minimum point
on the Hopf locus curve corresponds to a H21 degenerate point [5] (that is,
there are no Hopf points for feed substrate concentrations below this value).
This occurs at a feed substrate concentration of S0 = 108 gl−1. The graph
asymptotes to a feed substrate concentration of 122 gl−1 at an infinite resi-
dence time. Thus for feed substrate concentrations greater than 122 gl−1 the
steady state diagram contains one Hopf point, for 108 gl−1 ≤ S0 ≤ 122 gl−1

there are two Hopf points and for S0 < 108 gl−1, there are no Hopf points on
the steady state diagram.

We now consider a feed substrate concentration of 138 gl−1. At this value
of feed substrate concentration the system exhibits both steady state and
periodic behaviour [6]. The steady state diagrams are shown in Figure 4, for
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Figure 3: The Hopf locus in the (τ, S0)-parameter plane.
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Figure 4: The ethanol concentration as a function of (a) residence time and
(b) dilution rate for a feed substrate of concentration of 138 gl−1, where PD1
and PD2 denotes period doubling bifurcations.
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Figure 5: Productivity versus residence time for a feed substrate concen-
tration of 138 gl−1, where PD1 denotes a period doubling bifurcation.

the concentration of ethanol, and Figure 5 for the ethanol productivity. The
optimal productivity is given by Pr = 3.8 gl−1 which occurs at a residence
time of τ = 7.167 h. The periodic solutions become unstable at a residence
time of about 13.9 h at a period doubling bifurcation, denoted by PD1 in
Figures 4 and 5. The period doubled solution branch loses stability at a
residence time of τ = 14.27 h after which the system is returned to the
original periodic solution branch. There is also a period doubling bifurcation
at large residence times of about 55 h, corresponding to a dilution rate D(=
1/τ) = 0.018 h−1 and is denoted by PD2 in Figure 4b, which exhibits a
period doubling cascade route to chaos. However, since the performance in
this region is sub-optimal and, for brevity, is not discussed here.

The high viable cell solution branch in Figures 4a and 5 appear ‘disjointed’
from the rest of the solution branch. When the dilution rate is used as the
primary bifurcation parameter instead of the residence time, these high and
low viable cell solutions are shown to be part of the same solution branch,
as shown in Figure 4b noting that PD1 in Figures 4a and 4b correspond to
the same period doubling bifurcation point and PD2 corresponds to the pe-
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riod doubling bifurcation to chaos for high residence times discussed above.
Furthermore we have continued this branch into non-physical values of D to
show the entire solution branch. Hence, when the residence time formulation
is used, changing the dilution rate from a small positive D value to a small
negative dilution rate corresponds to the residence time changing discontin-
uously from a large positive τ value to a large negative residence time.

Upon increasing the feed substrate concentration to 160 gl−1 there appears
a combination of stable periodic solutions and stable steady states. The
optimal productivity of 3.8 gl−1h−1 occurs at τ = 7.11 h when the system
operates at a steady state condition, which was the case for feed substrate
concentrations of 100 gl−1 and 138 gl−1.

4 Conclusions

We examined a model for ethanol production through continuous fermenta-
tion in a single well mixed reactor. The chemical system was based on an
experimentally verified model described by Jarzebski [6], but has never been
systematically analysed to determine its dynamical behaviour and optimal
performance. We established the conditions for washout to occur. Since
washout is undesirable, equation (6) defines the minimum residence time
that can be used. We have shown that natural oscillations cannot occur if
the feed substrate concentration, S0, is sufficiently low, S0 < 108 gl−1. We
have also shown that there is one Hopf point on the steady state diagram for
S0 > 122 gl−1, whereas two Hopf points occur for 108 gl−1 < S0 < 122 gl−1.
Depending on the feed substrate concentration, the system exhibited steady
state and periodic behaviour. Period doubling bifurcations, with a period
doubling cascade route to chaos were observed. However, we found that for
the range of feed substrate concentrations analysed by Jarzebski [6], the per-
formance of the reactor based on ethanol productivity was maximised when
the system operated at a static steady state. Furthermore, the optimal pro-
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ductivity was practically independent of the feed substrate concentration.
The analysis undertaken here will be used as a benchmark for further work,
when we compare the performance between the single reactor and multi-
reactor cascade for ethanol production.

Acknowledgment This work was supported by a grant from the Aus-
tralian Research Council (DP0559177).

A Nomenclature

D dilution rate (h−1)
F flow rate into tank (lh−1)
K1, K2 saturation constants (gl−1)
mp maintenance factor of ethanol (h−1)
ms maintenance factor of substrate (h−1)
P ethanol concentration (gl−1)
Pc limiting ethanol concentration for viable cells (gl−1)
P ′c limiting ethanol concentration for non-viable cells (gl−1)
Pr productivity of ethanol (gl−1h−1)
S substrate concentration (gl−1)
S0 feed substrate concentration (gl−1)
t time (h)
Xd dead cell concentration (gl−1)
Xnv non-viable cell concentration (gl−1)
Xv viable cell concentration (gl−1)
V volume of the reactor (l)
Yx|p yield coefficient in conversion from biomass to ethanol (-)
Yx|s yield coefficient in conversion from biomass to substrate (-)
µd growth rate of dead cells (h−1)
µmax maximum growth rate of viable cells (h−1)
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µ′max maximum growth rate on non-viable cells (h−1)
µnv growth rate of non-viable cells (h−1)
µv growth rate of viable cells (h−1)
τ residence times (h)

Unless otherwise stated, the parameter values we use in this study are based
on those given by Jarzebski [6]: µmax = 0.25 h−1, µ′max = 0.21 h−1, Pc =
70 gl−1, P ′c = 130 gl−1, mp = 2.6 h−1, ms = 4.42 h−1, Yx|p = 0.235, Yx|s =
0.095 and K1 = K2 = 3 gl−1.
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