
ANZIAM J. 49 (EMAC2007) pp.C493–C512, 2008 C493

Block monotone domain decomposition
methods for a quasi-linear anisotropic

convection-diffusion equation

I. Boglaev1 S. Pack2

(Received 27 July 2007; revised 14 January 2008)

Abstract

This article deals with discrete monotone iterative methods for
solving a quasi-linear, singularly perturbed, convection-diffusion prob-
lem. A block monotone domain decomposition method based on a
Schwarz alternating method and on block (line) successive under-
relaxation iterative method is constructed. The advantages of this
monotone method are that the method solves only linear discrete sys-
tems at each iterative step of the iterative process and converges mono-
tonically to the exact solution of the quasi-linear problem. Numerical
experiments are presented.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/326
for this article, c© Austral. Mathematical Soc. 2008. Published April 15, 2008. ISSN
1446-8735

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/326


Contents C494

Contents

1 Introduction C494

2 Difference scheme C495

3 Monotone BSUR method C496

4 Monotone BDD method C499

5 Numerical experiments C501

References C511

1 Introduction

We are interested in the semilinear convection-diffusion problem with a bound-
ary layer

−εuxx − uyy + b(x, y)ux + f(x, y, u) = 0 , (x, y) ∈ Ω ,

u = g on ∂Ω , (1)

b ≥ β > 0 on Ω̄ , 0 < c∗ ≤ fu ≤ c∗ , (x, y, u) ∈ Ω̄× (−∞ ,∞) ,

where Ω = {(x, y) : 0 < x < 1, 0 < y < 1} , ε is a small positive parameter, β,
c∗ and c∗ are constants, ∂Ω is the boundary of Ω and fu ≡ ∂f/∂u .

For ε � 1 , problem (1) is singularly perturbed and characterized by
an elliptic boundary layer of width O(ε| ln ε|) at x = 1 . The anisotropic
problem (1) frequently occurs in many applications with strongly anisotropic
diffusion; for example, this problem is related to the numerical simulation of
heat transfer for casting amorphous metal ribbons by melt extraction [2].

This article solves a nonlinear upwind difference scheme applied to (1) by
the monotone method (known as the method of lower and upper solutions).
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This method leads to iterative methods which converge globally and solve
only linear discrete systems at each iterative step which is of great importance
in practice.

In the past ten years, with an increase in high performance parallel com-
puters, much interest has been shown in domain decomposition techniques to
help reduce the processor time and the computer memory required for solving
problems. Domain decomposition techniques involve splitting the problem
into subproblems and solving each problem on its own processor. Recently,
much interest has been shown in the Schwarz-type iterative domain decom-
position methods [4, 5].

The purpose of this article is to extend the monotone domain decomposi-
tion method from Boglaev [1] in a such way that computation of the discrete
linear subsystems on subdomains which are located outside the boundary
layer is implemented by the block (line) successive under-relaxation (bsur)
method (Varga [6] gives details of block iterative methods). A basic advan-
tage of the bsur method is that the Thomas algorithm can be used for each
linear subsystem defined on these subdomains in the same manner as for
one-dimensional problem.

In Section 2, for solving (1) we present a nonlinear difference scheme
based on an upwind approximation of the first derivative. Section 3 considers
the bsur method which possesses the monotone convergence. Section 4
constructs a block domain decomposition (bdd) method which converges
monotonically. The final Section 5 presents results of numerical experiments
for the proposed methods.

2 Difference scheme

On Ω̄ = Ω ∪ ∂Ω we introduce a nonuniform mesh Ω̄h = Ω̄hx × Ω̄hy :

Ω̄hx = {xi , 0 ≤ i ≤ Nx ; x0 = 0 , xNx = 1 ; hxi = xi+1 − xi} ,
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Ω̄hy = {yj , 0 ≤ j ≤ Ny ; y0 = 0 , yNy = 1 ; hyj = yj+1 − yj} .

For approximation of (1), we use the upwind difference scheme

Lhv(p) + f(p, v) = 0 , p = (xi, yj) ∈ Ωh , v = g on ∂Ωh . (2)

The linear difference operator

Lhv = −εD2
xv −D2

yv + bD−x v ,

where D2
xv(p), D2

yv(p) and D−x v(p) are the central difference and backward
difference approximations to the second and first derivatives, respectively,

D2
xv(p) = [(vi+1,j − vij) /hxi − (vij − vi−1,j) /hxi−1] /h̄xi ,

D2
yv(p) = [(vi,j+1 − vij) /hyj − (vij − vi,j−1) /hyj−1] /h̄yj ,

D−x v(p) = (vij − vi−1,j) /hxi−1 ,

h̄xi = (hxi−1 + hxi) /2 , h̄yj = (hyj−1 + hyj) /2 ,

where v(p) = vij = v(xi, yj) .

We say that v̄(p) is an upper solution of (2) if it satisfies the inequalities

Lhv̄(p) + f(p, v̄) ≥ 0 , p ∈ Ωh , v̄ ≥ g on ∂Ωh .

Similarly, v(p) is called a lower solution if it satisfies all the reversed inequal-
ities.

3 Monotone BSUR method

We write down the difference scheme (2) at an interior mesh point (xi, yj) ∈ Ωh

in the form

dijvij − wijvi−1,j − eijvi+1,j − sijvi,j−1 − nijvi,j+1 + f (xi, yj, vij) + g∗ij = 0 ,
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where g∗ij is associated with the boundary function g(p), and

wij = ε/(h̄xihxi−1) + bij/hxi−1 , eij = ε/(h̄xihxi) ,

sij = 1/(h̄yjhyj−1) , nij = 1/(h̄yjhyj) , dij = wij + eij + sij + nij .

The coefficients of the difference scheme satisfy the inequalities

dij > 0 , wij , eij , sij , nij ≥ 0 ,

dij − (wij + eij + sij + nij) ≥ 0 ,

i = 1, . . . , Nx − 1 , j = 1, . . . , Ny − 1 .

We now define vectors and diagonal matrices by

Vi =
(
vi,1, . . . , vi,Ny−1

)T
, G∗i =

(
g∗i,1, . . . , g

∗
i,Ny−1

)T

,

Fi (Vi) =
(
f (xi, y1, vi,1) , . . . , f

(
xi, yNy−1, vi,Ny−1

))T
,

Wi = diag
(
wi,1, . . . , wi,Ny−1

)
, Ei = diag

(
ei,1, . . . , ei,Ny−1

)
.

Then the difference scheme is represented in the vector-matrix form

AiVi −WiVi−1 − EiVi+1 + Fi (Vi) +G∗i = 0 , i = 1, . . . , Nx − 1 , (3)

with the tridiagonal matrices Ai, i = 1, . . . , Nx − 1 ,

Ai =


di,1 −ni,1 0
−si,2 di,2 −ni,2

. . . . . . . . .

−si,Ny−2 di,Ny−2 −ni,Ny−2

0 −si,Ny−1 di,Ny−1

 .

Matrices Wi and Ei contain the coupling coefficients of a mesh point, respec-
tively, to the mesh point on the left (west) line and the mesh point on the
right (east) line.
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The block under-relaxation (0 < ω ≤ 1) or over-relaxation (1 ≤ ω ≤
2) iterative methods for solving the linear systemAiVi−WiVi−1−EiVi+1+Fi =
0 have the form [6, p.223]

AiZ
(n)
i − ωWiZ

(n)
i−1 = −ωRi(V

(n−1)
i ) ,

Z
(n)
i = V

(n)
i − V (n−1)

i , i = 1, . . . , Nx − 1 ,

where Ri(V
(n−1)
i ) = AiV

(n−1)
i − WiV

(n−1)
i−1 − EiV

(n−1)
i+1 + Fi , and ω is the

relaxation parameter. We define the bsur method for solving the nonlinear
system (3) in a similar way with the diagonal preconditioner ωc∗I, where I is
the (Ny − 1)× (Ny − 1) identity matrix,

(Ai + ωc∗I)Z
(n)
i − ωWiZ

(n)
i−1 = −ωRi(V

(n−1)
i ) , (4)

Z
(n)
i = V

(n)
i − V (n−1)

i , i = 1, . . . , Nx − 1 , ω = const ∈ (0, 1] .

Ri(V
(n−1)
i ) = AiV

(n−1)
i −WiV

(n−1)
i−1 − EiV

(n−1)
i+1 + Fi(V

(n−1)
i ) +G∗i .

Remark 1 A basic advantage of the bsur method (4) is that the Thomas
algorithm for solving tridiagonal systems can be used for each subsystem i,
i = 1, . . . , Nx − 1 . Since V

(n)
0 is given by the boundary condition, the linear

system (4) for i = 1 is tridiagonal and is solved for V
(n)

1 by the Thomas
algorithm. Now, the linear system (4) for i = 2 is the tridiagonal system

for V
(n)

2 . Thus, starting from i = 1 and finishing off with i = Nx − 1 , in

serial, we solve only the tridiagonal systems for V
(n)
i , i = 1, . . . , Nx − 1 .

In the notation V = (V1, . . . , VNx−1)T , we have the following theorem.

Theorem 2 Let V̄ (0) , V (0) be upper and lower solutions of (3). Then the
upper sequence {V̄ (n)} generated by the bsur method (4) converges monoton-
ically from above to the unique solution V of (3), the lower sequence {V (n)}
generated by (4) converges monotonically from below to V :

V (n−1) ≤ V (n) ≤ V ≤ V̄ (n) ≤ V̄ (n−1) , n ≥ 1 .

Boglaev [3] provides the full proof of this theorem.
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Figure 1: Fragment of the domain decomposition with overlapping subdo-
mains Ωm−1, Ωm, Ωm+1 and overlaps θm−1, θm.

4 Monotone BDD method

We now combine the monotone domain decomposition method from Boglaev [1]
and the monotone bsur method (4).

We introduce the set of the overlapping vertical strips Ω̄m, m = 1, . . . ,M ,
with the boundaries

∂Ωm = γl
m ∪ γr

m ∪ γ0
m ,

where γl
m and γr

m are the left and right boundaries of Ω̄m, respectively, and
γ0

m belongs to the boundary of Ω̄. Thus, Ω̄m∩Ω̄m+1 = θ̄m , m = 1, . . . ,M−1,
where θ̄m is the overlap between two subdomains Ω̄m and Ω̄m+1 (a fragment
of the domain decomposition is illustrated in Figure 1). On the subdomains,
we introduce nonuniform meshes Ω̄h

m = Ω̄m ∩ Ω̄h , m = 1, . . . ,M .

One complete iterative step includes solving a sequence of M subproblems
on subdomains Ω̄h

m, m = 1, . . . ,M , in serial. As the subdomains overlap each
other, the left boundary conditions for each subdomain Ω̄h

m, m = 2, . . . ,M ,
are obtained from the solution found in the previous vertical strip.
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1. Initialization: On the whole mesh Ω̄h, choose an initial function v(0)(p),
p ∈ Ω̄h , satisfying the boundary condition v(0)(p) = g(p) on ∂Ωh.

2. On the first subdomain Ω̄h
1 , compute mesh function z

(n)
1 (p) by using

the bsur method (4), and denote

v
(n)
1 (p) = v(n−1)(p) + z

(n)
1 (p) , p ∈ Ω̄h

1 . (5)

3. On subdomains Ω̄h
m, m = 2, . . . ,M , compute in serial mesh func-

tions v
(n)
m (p), m = 2, . . . ,M , satisfying the difference schemes

(Lh + c∗)z(n)
m (p) = −Rh(p, v(n−1)) , p ∈ Ωh

m , (6)

z(n)
m (p) = v(n)

m (p)− v(n−1)(p) ,

Rh(p, v(n−1)) = Lhv(n−1)(p) + f(p, v(n−1)) ,

with the boundary conditions

z(n)
m (γhl

m) = z
(n)
m−1(γhl

m) , z(n)
m (γhr

m ) = 0 , z(n)
m (γh0

m ) = 0 ,

where

γhl
m = γl

m ∩ Ω̄h
m , γhr

m = γr
m ∩ Ω̄h

m , γh0
m = γ0

m ∩ Ω̄h
m .

4. Compute the solution v(n)(p), p ∈ Ω̄h by piecing together the solutions
on the subdomains

v(n)(p) =

{
v

(n)
m (p) , p ∈ Ω̄h

m \ θh
m , m = 1, . . . ,M − 1 ;

v
(n)
M (p) , p ∈ Ω̄h

M .
(7)

5. Stopping criterion: If a prescribed accuracy is reached, then stop; oth-
erwise go to Step 2.
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Theorem 3 Let v̄(0) , V (0) be upper and lower solutions of (2). Then the
upper sequence {v̄(n)} generated by the block domain decomposition (bdd)
method (5)–(7) converges monotonically from above to the unique solution v
of (2), the lower sequence {V (n)} generated by method (5)–(7) converges
monotonically from below to v:

V (n−1)(p) ≤ V (n)(p) ≤ v(p) ≤ v̄(n)(p) ≤ v̄(n−1)(p) , p ∈ Ω̄h, n ≥ 1 .

Boglaev [3] provides the full proof of this theorem.

Remark 4 In the case where on all subdomains Ω̄h
m, m = 1, . . . ,M , the

domain decomposition method (6) and (7) is in use, we get the domain
decomposition (dd) method from Boglaev [1]. Theorem 3 holds true for the
dd method. Boglaev [1] provides a proof of this result. The particular case
M = 1 corresponds to the monotone undecomposed method (6).

5 Numerical experiments

Consider the test problem with b(x, y) = 1 , f(x, y, u) = 1 − exp (−u) and
g(x, y) = 1 in (1).

We apply all the three domain decomposition methods, the dd, bsur
and bdd methods, to this problem using a piecewise uniform mesh in the
x-direction and uniform mesh in the y-direction. The number of mesh points
in the x- and y-direction are set equal to N . This problem has an elliptic
boundary layer (area of rapid change) near x = 1 , where the equation for
the width of the boundary layer is given by σx = 2ε log(N)/β , β = 1 [1]. We
locate half of the mesh points in the x-direction within the layer.

In our numerical experiments, the stopping criteria for the iterates is

max
P∈Ω̄h

‖v(n)(P )− v(n−1)(P )‖ ≤ 10−6 .
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To solve the linear difference problems within the monotone dd and the
monotone bdd methods, gmres solver with restarts is used with a diagonal
preconditioner. gmres is a iterative method for finding a numerical solution
to a nonsymmetric system in the form Ax = b . In the nth iteration, n =
1, . . . , gmres approximates the solution by using Arnoldi iterations to find
a vector in a Krylov subspace Kn with the minimal residual, where Kn =
span{b , Ab , A2b , . . . , An−1b} . One of the disadvantages of a gmres is the
amount of storage required. To overcome this, gmres with restarts is used.
When the solver is restarted all the accumulated data are cleared and the last
set of results is used as the initial data. Preconditions are often used within
gmres to accelerate the convergence. Using a preconditioner P , gmres
solves the problem PAx = Pb . We use a diagonal preconditioner, where
P is the inverse of the diagonal part of A. Within gmres, the required
accuracy used is 10−6, the maximum numbers of iterations and restarts are
50 and 20, respectively.

To decompose the domain Ω̄h into M overlapping subdomains we begin
by splitting the domain into M subdomains Q̄h

m, m = 1, . . . ,M ,

Q̄h
m = {(xi, yj) : (m− 1)N/M ≤ i ≤ mN/M , 0 ≤ j ≤ N} ,

Q̄h
m ∩ Q̄h

m+1 = γh
m , γh

m = {(xi, yj) : i = mN/M , 0 ≤ j ≤ N} ,

where γh
m is the interfacial boundary between subdomains Q̄h

m and Q̄h
m+1.

We consider two locations of overlaps. In the first one, we choose overlaps
on the left of the interfacial boundaries

θ̄h
m = {(xi, yj) : mN/M−d ≤ i ≤ mN/M , 0 ≤ j ≤ N} , 2 ≤ d ≤ N/M−1 ,

where the minimal and maximal overlap sizes are d = 2 and d = N/M − 1 ,
respectively. Thus, the overlapping subdomains are defined by

Ω̄h
m = {(xi, yj) : (m−1)N/M−d ≤ i ≤ mN/M , 0 ≤ j ≤ N} , m = 2, . . . ,M ,

where Ω̄h
1 = Q̄h

1 . Figure 2(a) illustrates this case. If we choose overlaps on
the right of the interfacial boundaries, then in a similar way, we define the
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Figure 2: (a) Location of the overlap on the left. (b) Location of the overlap
on the right.

overlapping subdomains in the form

Ω̄h
m = {(xi, yj) : (m− 1)N/M ≤ i ≤ mN/M + d , 0 ≤ j ≤ N} ,

2 ≤ d ≤ N/M − 1 , m = 1, . . . ,M − 1 , Ω̄h
M = Q̄h

M .

Figure 2(b) illustrates this case.

Table 1 displays the iteration count and execution time of the dd method
for the two different locations of the overlaps. Table 1 shows that for the
minimal overlap size the iteration count is smaller when the overlaps occur
on the left of the interfacial boundaries. However, for the maximal overlap
size, there is very little difference in the iteration count of the dd method.
For both the minimal and maximal overlap sizes there is little difference in
the execution time for the difference locations of the overlaps. For the above
reasons the following numerical results have the overlaps located on the left
of the interfacial boundaries.

Table 2 displays the iteration counts and execution time over varying
numbers of subdomains for different values of ε and N for the monotone
dd method. The results are displayed for the minimal and maximal overlap
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Table 1: Iteration count and execution time of the monotone dd method
with the overlaps located to the left and right of the interfacial boundaries
using the minimal and maximal overlap sizes above and below the line, re-
spectively.

ε 10−1 10−2 10−3 10−4

N/M 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Iteration count

Left 6
19
6

21
7

29
12

6
7
6

21
7

32
13

6
6
6

24
7

39
16

6
6
6

25
7

40
16

Right 6
19
6

21
7

29
12

6
25
6

28
7

36
14

6
32
6

36
7

48
17

6
33
6

37
7

49
18

Execution time (seconds)

Left 5
10
6

5
5

3
2

10
5
12

6
6

8
7

10
4
12

8
6

9
7

10
4
12

7
6

9
7

Right 5
11
8

4
5

3
2

10
10
12

7
6

8
7

10
6
10

6
6

9
7

10
4
10

5
6

9
8

Table 2: Iteration count and execution time of the monotone dd method
using the minimal and maximal overlap size above and below the line, re-
spectively.

ε 10−1 10−2 10−3 10−4

N/M 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
Iteration count

25
6

12
6

13
7

17
17

6
6
6

15
8

23
23

6
6
6

17
8

27
27

6
6
6

17
8

28
28

26
6

19
6

21
7

29
12

6
7
6

21
7

32
13

6
6
6

24
7

39
16

6
6
6

25
7

40
16

27
6

32
6

37
7

51
11

6
8
6

32
6

47
10

6
13
6

37
7

58
12

6
12
6

37
7

59
12

Execution time (seconds)

25
0.4

0.4
0.5

0.2
0.3

0.2
0.2

0.5
0.3
0.7

0.4
0.5

0.5
0.5

0.5
0.3
0.7

0.5
0.5

0.6
0.6

0.5
0.3
0.7

0.9
0.9

0.6
0.6

26
5

10
6

5
5

3
2

10
5
12

6
6

8
7

10
4
12

8
6

9
7

10
4
12

7
6

9
7

27
140

540
191

208
171

65
69

177
150
254

163
179

91
89

191
311
277

167
224

114
102

191
286
278

159
225

119
104
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Figure 3: Serial acceleration of the monotone dd method.

size above and below the line, respectively. These iteration counts show that
for the larger overlap size the iteration count is less. Table 2 also shows
that as the number of subdomains increases so does the number of iterations
needed for the method to converge. We also conclude from Table 2 that the
monotone dd method uniformly converges in its iteration count with respect
to ε.

We define the serial acceleration of a domain decomposition method as
the execution time of the undecomposed method divided by the minimum
execution time of the domain decomposition method. Using the execution
times in Table 2, we display the serial acceleration for the monotone dd
method in Figure 3.

A serial acceleration greater than 1 indicates an advantage in the domain
decomposition method. Figure 3 shows that for all values of ε and N , the
serial acceleration is greater than 1 indicating an advantage in using the
monotone dd method. As ε decreases the serial acceleration from using the
monotone dd method increases.

Figure 4 displays the execution time for the monotone bsur method over
varying values of the relaxation parameter ω, where N = 64 . Figure 4 shows
that ω = 1 (the monotone block Gauss–Seidel method) results in the fastest
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Figure 4: Execution time of the monotone bsur method over varying values
of ω.

execution time. Numerical observations indicate that this result holds for
varying values of N and ε, leading to the conclusion that ω = 1 is optimal.
All following numerical results have ω = 1 .

Table 3 displays the iteration count and execution time of the monotone
bsur method for varying values of N and ε. Using Table 3, we see that both
the iteration count and the execution time increase with both N and ε−1.

Using Table 3, the serial acceleration is calculated and displayed in Fig-
ure 5. Figure 5 shows that for all values of N and ε the serial acceleration is
significantly greater than one, indicating a very significant advantage in the
monotone bsur method.

To investigate the serial acceleration of the monotone bdd method, we
begin by exploring the effect of varying the size of the first subdomain, which
is the subdomain solved by the monotone bsur method. Figure 6 displays
the execution time for varying sizes of the first subdomain with N = 64 .
The top and bottom graphs correspond to two and three subdomains, re-
spectively. In both graphs the minimum overlap size is used. Figure 6 shows
that the execution time of the monotone bdd method is minimal when the
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Table 3: Iteration count and execution time of the monotone bsur method.

N/ε 10−1 10−2 10−3 10−4 10−5

Iteration count

25 86 132 166 171 171

26 278 343 449 464 466

27 908 923 1229 1279 1284

Execution time (seconds)

25 0.04 0.05 0.06 0.07 0.07

26 0.38 0.46 0.60 0.62 0.62

27 4.83 4.88 6.47 6.76 6.78

Figure 5: Serial acceleration of the monotone bsur method.
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Figure 6: Execution time for the monotone bdd method with N = 64 .
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Figure 7: Serial acceleration of the monotone bdd method.

first subdomain contains half the amount of mesh points. This is when the
monotone bsur is used outside of the boundary layer and the monotone dd is
used within the boundary layer. From our numerical observations this holds
for varying values of ε, N and M . Using this information, the monotone bdd
method is timed over varying values of ε, N and M with the resulting serial
acceleration displayed in Figure 7.

Figure 7 shows that for all values of N and ε there is a significant serial
acceleration. It also shows that as ε decreases the serial acceleration for the
monotone bdd method increases.

Figure 8 displays the serial acceleration for all the three domain decom-
position methods for varying values of ε and different values of N . Figure 8
shows that the monotone dd method results in the smallest serial accelera-
tion. It also shows that when ε > 10−4 , the monotone bsur method results
in the highest acceleration. As ε decreases this serial acceleration also tends
to decrease and the monotone bdd method results in the fastest serial accel-
eration.

From the numerical experiments we conclude that all the three domain
decomposition methods result in a serial acceleration. The execution time of
the monotone bsur method is minimal when ω = 1 . The execution time of
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Figure 8: Serial acceleration of the monotone domain decomposition meth-
ods.
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the monotone bdd method is minimal when the first subdomain is outside
of the boundary layer. When ε > 10−4 , the monotone bsur method results
in the highest serial acceleration. However, when ε < 10−4 , the monotone
bdd method results in the highest serial acceleration.
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