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A study of nonlinear waves and resonance in
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Abstract

A stratified intrusion flow is considered in which there are three
moving (horizontal) fluid layers and two interfaces. The top and bot-
tom layers move with different speeds and may even move in opposite
directions, producing an exchange flow. The middle layer is in mo-
tion relative to the outer two, and possesses shear so that the speed
in the three-fluid system is continuous when the interfaces are both
unperturbed. The flow configuration supports the propagation of pe-
riodic waves. A linearized analysis for small wave amplitudes is pre-
sented. This is compared to some nonlinear periodic solutions found
numerically using a Fourier technique. Such solutions permit non-
linear resonances between the various solution modes and these have
been computed extensively.
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1 Introduction

An intrusion flow is approximated by three horizontal fluid layers, each of
constant density and in motion. Such flows occur in the atmosphere, for
instance, or in runoff flowing into reservoirs. Layered flows of this type are
known to support the propagation of periodic, steady waves. The case of a
current intruding into a stationary fluid has been considered by Forbes et
al. [1], who obtained a number of geometrically limiting solutions. Similar
three layer problems have been studied by Michallet and Dias [3] and Rus̊as
and Grue [5], who found that resonant effects were present when two modes
of solution were available for a particular set of speed parameters at near
integer multiple wavelengths. The focus of this work is the study of these
effects for the present problem. There is a possibility that the wave profiles
will become multivalued, as was seen in the two layer flows of Pullin and
Grimshaw [4] and Hocking and Forbes [2] as well as by Rus̊as and Grue [5],
and this possibility will be accounted for.
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The model is formulated in Section 2; a linearized solution for small
amplitudes is presented in Section 3. The nonlinear solution technique is
outlined in Section 4, with Section 5 giving an array of numerical solutions.

2 Model and governing equations

The flow to be considered consists of three horizontal fluid layers. Through-
out the paper these are denoted with subscripts 1, 2 and 3 for the top,
middle and bottom layers respectively. Each layer is of constant density ρi,
i = 1, 2, 3 , with ρ1 < ρ2 < ρ3 . Two interfaces are present on the upper and
lower boundaries of the middle layer, labelled y = ηU and y = ηL . There is
a constant horizontal background flow in the two outer layers, with current
speeds c1 and c3. The background flow in Layer 2 possesses shear so that its
speed matches the outer two layers when the interfaces are flat. The fluids
are assumed to be incompressible and inviscid; the shear in the middle layer
leaves only the two outer layers flowing irrotationally.

By introducing non-dimensional variables the system may be shown to
be dependent on the four dimensionless parameters

F1 =
c1√
gh

, F3 =
c3√
gh

, D1 =
ρ1

ρ2

, D3 =
ρ3

ρ2

. (1)

Here the length scale is chosen as h, the height of the middle layer. Velocity
is scaled with

√
gh, a characteristic speed in the middle layer, to give the

Froude numbers F1 and F3. Density is scaled by the density of the middle
layer, ρ2, giving two density ratios D1 and D3. The appropriate form for the
linear y-dependent background shear flow in the middle layer is

F2(y) = F3 + (F1 − F3)y . (2)

This non-dimensional system is illustrated in Figure 1.
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Figure 1: A diagram of the flow configuration in non-dimensional variables.

We define fluid velocity vectors qi = uii + vij (i = 1, 2, 3) in each layer.
In Layers 1 and 3 we also define a velocity potential in the usual manner,

φi = Fix+ Φi ,

qi =

(
Fi +

∂Φi

∂x

)
i +

∂Φi

∂y
j (i = 1, 3). (3)

In Layer 2 this is complicated by the presence of shear; no overall velocity
potential exists, but we define the velocity vector q2 as

q2 =

(
F3 + (F1 − F3)y +

∂Φ2

∂x

)
i +

∂Φ2

∂y
j , (4)

where Φ2 is a velocity potential for the irrotational component of the flow
in Layer 2. In addition, a streamfunction ψ2 for Layer 2 is introduced. This
must have the form

ψ2(x, y) = F3y +
1

2
(F1 − F3)y

2 + Ψ2(x, y) , (5)

where the irrotational part of the streamfunction Ψ2 is related to Φ2 via the
Cauchy–Riemann equations.
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Conservation of mass requires that the velocity potentials satisfy Laplace’s
equation in each of the three unknown fluid regions

∇2φ1 = 0 in ηU < y <∞ , (6)

∇2Φ2 = 0 in ηL < y < ηU , (7)

and ∇2φ3 = 0 in −∞ < y < ηL . (8)

The problem is highly nonlinear as the shape of the regions (and of the two
interfaces) is not known beforehand.

Several boundary conditions are specified on each interface. On the up-
per interface there are two kinematic conditions which require that neither
Fluid 1 or Fluid 2 can cross the interface,

vi = ui
∂ηU

∂x
(i = 1, 2) on y = ηU . (9)

Similarly, on the lower interface we require that

vi = ui
∂ηL

∂x
(i = 2, 3) on y = ηL . (10)

By equating pressure in Fluid 1 and Fluid 2 at the upper interface (via
Bernoulli’s equation) we obtain the dynamic condition

1

2
D1F

2
1 −

1

2
D1(u

2
1 + v2

1)−D1(ηU − 1)

=
1

2
F 2

3 −
1

2
(u2

2 + v2
2) + (F1 − F3)ψ2 − (ηU − 1) on y = ηU , (11)

and there is likewise the dynamic condition for the lower interface

1

2
F 2

3 −
1

2
(u2

2 + v2
2) + (F1 − F3)ψ2 − ηL

=
1

2
D3F

2
3 −

1

2
D3(u

2
3 + v2

3)−D3ηL on y = ηL , (12)
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which equates pressure in Fluids 2 and 3 there. Far from the middle layer,
flow conditions are uniform, and therefore

φ1 → F1x as y → +∞ ,

φ3 → F3x as y → −∞ , (13)

as Fluids 1 and 3 are of infinite vertical extent. Periodic solutions to equa-
tions (9)–(12) are sought for φ1, Φ2, φ3, ηU and ηL. The assumption of
periodicity leads to the introduction of a new parameter, the dimensionless
wavenumber k. This is now needed, in addition to the dimensionless Froude
numbers and density ratios (1), to specify a solution completely.

3 Linearized solution

A linearized solution to the governing equations (6)–(12) is now presented.
We make a perturbation of small amplitude about uniform flow with flat
interfaces to obtain a dispersion relation between the parameters. The ap-
propriate perturbed expansions for the velocity potentials are

Φi(x, y) = εΦi1 +O(ε2) (i = 1, 2, 3),

where ε is a small constant in the order of the wave’s amplitude. We likewise
perturb the interfacial profiles about y = 0 and y = 1 :

ηL(x) = εHL1(x) +O(ε2) , (14)

ηU(x) = 1 + εHU1(x) +O(ε2). (15)

In order to satisfy Laplace’s equations (6)–(8) the velocity potentials are
chosen to be

Φ11(x, y) = a11e
−k(y−1) sin kx , (16)

Φ21(x, y) = (c2 cosh ky + d2 sinh ky) sin kx , (17)
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Φ31(x, y) = a31e
ky sin kx . (18)

These have period 2π/k in x and the appropriate y-dependence, with Φ11

and Φ31 decaying to zero as y →∞ and y → −∞ respectively. The stream-
function (5) for Fluid 2 is likewise linearized to give

ψ2(x, y) = F3y +
1

2
(F1 − F3)y

2 + εΨ21(x, y) +O(ε2) , (19)

where Ψ21 may be determined from the irrotational velocity potential Φ21 via
the Cauchy–Riemann equations. These perturbed forms are now substituted
into the kinematic and dynamic boundary conditions (9)–(12) (with terms
of order order ε2 and higher discarded) to obtain a system of linear algebraic
equations. These are solved to obtain the dispersion relation

D1kF
2
3 +D3kF

2
1 +D1D3 tanh k + k2F 2

1F
2
3 tanh k = 0 , (20)

where D1 = D1kF
2
1 − F1(F1 − F3)− (1−D1) ,

and D3 = D3kF
2
3 + F3(F1 − F3)− (D3 − 1).

From this relation we establish the co-dependency of the Froude numbers
and density ratios on wavenumber so that the governing equations (6)–(12)
are satisfied to the first order in ε. It can be shown, in the long wavelength
limit k → 0 , that the dispersion relation (20) becomes

F3 =
(1−D1)(D3 − 1)

F1(D3 −D1)
. (21)

In addition, for short waves (k →∞), it follows that either F3 → 0 or

F3 ≈
1−D1 + F 2

1 (1− k − kD1)

F1

. (22)

The effect of varying each of the five parameters is impractical to investigate
fully; instead we fix the value of the two density ratios and the upper layer
Froude number F1 at values of physical interest. This leaves (20) with two
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Figure 2: An example solution of the linearized dispersion relation (20) for
the lower layer Froude number F3 against the wavenumber k.
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free parameters, the wavenumber k and lower layer Froude number F3. The
relationship between these two parameters is investigated by varying one and
numerically solving for the other.

An example solution is shown in Figure 2. Here the density ratios have
been chosen to be close to unity, with D1 = 0.99 and D3 = 1/0.99 , and the
upper layer Froude number to be F1 = 0.1 . In this diagram the solid lines
indicate that the interfaces are in phase with each other, and the dashed lines
indicate that the interfaces are out of phase. There are three values of Froude
number for fixed wavenumber, except for the small interval near k ≈ 1.5 .
Likewise, for Froude number less than F3 ≈ 5.025× 10−2 there are two pos-
sible solutions at different wavenumbers. When one of these wavenumbers is
an integer multiple of the other, linear resonance is possible. In a nonlinear
regime, where the Froude number is allowed to vary as the waves are com-
puted to finite amplitudes, it may be possible to excite nonlinear resonance
effects at near integer multiples.

4 Nonlinear solution

Nonlinear solutions to equations (6)–(12) were sought using a numerical pro-
cedure. This involves computing Fourier series solutions for the velocity
potentials and the interfacial profiles. The profiles are re-parametrized using
arc length to allow for the possibility that they become multivalued (as has
been seen in similar studies [4, 2, 5, e.g.].

The Fourier series solutions for the velocity potentials must satisfy Laplace’s
equations (6)–(8) (and decay as in (13)) and are chosen to be

Φ1 =
N∑

n=1

Bne
−nk(y−1) sinnkx , (23)
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Φ2 =
N∑

n=1

[
Cn coshnk(y − 1

2
) +Dn sinhnk(y − 1

2
)
]

sinnkx , (24)

Φ3 =
N∑

n=1

Fne
nky sinnkx , (25)

where these expressions become exact as N →∞ .

An arclength variable s is now introduced, and the interfacial profiles are
re-parametrized in the form (x(s), y(s)). By making a change of variables
with a new scaled arc length ξ,

ξ =
2πs

L
, 0 < ξ ≤ 2π ,

where L is total arc length over one wave period, the Pythagorean definition
of arc length is used to derive an extra condition to be satisfied on each
interface: (

dx

dξ

)2

U,L

+

(
dy

dξ

)2

U,L

=
L2

U,L

4π2
. (26)

Here the subscripts U and L refer to the upper and lower interfaces, re-
spectively. The two interfaces are represented in terms of their Cartesian
coordinates as (x, y) = (xL, ηL) for the lower interface and (x, y) = (xU , ηU)
for the upper interface. These are chosen as 2π-periodic in ξ with the Fourier
series representations:[

ηU

ηL

]
=

[
1 + P0

R0

]
+

N∑
n=1

[
Pn

Rn

]
cosnξ , (27)

[
xU

xL

]
=

ξ

k
+

N∑
n=1

[
Tn

Un

]
sinnξ . (28)

Again, these become exact as N → ∞ . In formulating finite amplitude
solutions an extra parameter as a measure of wave amplitude is required.
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An appropriate choice is half the peak-to-trough displacement of the upper
interface, defined as

2AU = ηU(0)− ηU(π) . (29)

The quantity AU in equation (29) is generally specified in the numerical
method, and F3 is obtained as an output.

Each nonlinear solution is specified by the 8N + 2 Fourier coefficients as
well as the lower layer Froude number. These are solved for numerically with
wave amplitude held constant. A vector of the 8N + 3 unknowns is formed
for use in a Newton’s method routine. Here the error vector is made up of the
(slightly rearranged) boundary conditions (9)–(12) multiplied by a Fourier
basis function (N times for each condition) and then integrated over one pe-
riod. Specifically the kinematic conditions (9)–(10) are multiplied by the odd
Fourier basis functions sin jξ (j = 1, . . . , N), and integrated, while the dy-
namic conditions (11)–(12) and the arc length conditions (26) are multiplied
by the even Fourier bases cos jξ (j = 1, . . . , N), thus giving 8N components
of the error vector. The remaining three components are obtained by inte-
grating each of the dynamic conditions without premultiplication and from
the wave amplitude condition (29). The trapezoidal rule was used for all nu-
merical integration, due to its superior accuracy for periodic integrands. It
was found that the solutions converged accurately for N = 51 with 801 grid
points for each integration.

5 Results

Some nonlinear solutions are now presented. The wavenumber was fixed at
k = 1 , a value chosen with a view to obtaining nonlinear resonance effects.
The linearized solution (as shown in Figure 2) indicates that such effects
might be possible for two speeds at this wavenumber, namely the exchange
flows at F3 ≈ −0.08 and F3 ≈ −0.04 . These Froude numbers were allowed
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Figure 3: Dependence of lower layer Froude number F3 on upper wave
amplitude AU for the slower speed case at k = 1 .

to vary as wave amplitude is increased, but the wavenumber and the remain-
ing parameters were held constant at the same values as in the previously
discussed linearized solution.

The first set of results is for the slower exchange flow, emerging from
the linearized solution at F3 ≈ −0.04 . For small amplitudes this agrees
very closely with the linearized solution and, as predicted, the interfaces
are in phase. The relationship between the parameters F3 and AU is pre-
sented in Figure 3. Here the linearized solution is represented by a hori-
zontal dashed line, with the series of multi-coloured solid lines representing
various disjoint nonlinear solutions. Each of these solutions has a portion
which traces out an increase in Froude number with increasing amplitude.
In addition to this, at several points a pair of solutions bifurcates away from
this main branch and continues through (AU , F3)-space. These extra so-
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Figure 4: Three interfacial profiles for the slower speed case. The red lines
are wave profiles for AU ≈ 0.21 . The solid and dashed black lines display a
1 : 5 resonance and are for AU ≈ 0.025 .

lutions display nonlinear resonant effects. The first set (bifurcating from
(AU , F3) = (0.0462,−0.0394)) is a 1 : 5 resonance which continues very close
to the main branch, right back to AU = 0 and beyond. These solutions
have five ripples on the lower interface, that is, a superposed wave of shorter
wavelength. This shorter wavelength component may be either in or out of
phase with the primary component; hence the two branches.

The interfacial profiles for AU = 0.025 are shown in Figure 4. Shown
as a dotted line in Figure 3 is the linearized solution for k = 5 ; this is the
solution mode that interacts with the primary component of the wave to
produce the resonance. Similarly the linearized solution for k = 6 and k = 7
are shown as dotted lines in Figure 3, with the solutions which bifurcate away
these values of F3 displaying 1 : 6 and 1 : 7 resonances, respectively. Many
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Figure 5: Dependence of lower layer Froude number F3 on upper wave
amplitude AU for the faster speed case at k = 1 .

interfacial profiles have been computed along these solutions branches, but
are not presented here in the interests of space; they typically possess many
small waves on the lower interface (as in Figure 4). Each of these resonant
effects is excited at a slightly faster speed than the linearized value of Froude
number might suggest.

The second set of solutions at this wavenumber emerge from the linearized
solution at F3 ≈ −0.08 . Again, at small amplitudes the nonlinear solutions
agree closely with the linearized predictions. As amplitude is increased, the
lower layer Froude number decreases until an amplitude of about AU ≈ 0.22 .
Figure 5 shows the relationship between the lower fluid speed F3 and the
wave amplitude AU for these two branches of solutions. The shapes of these
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Figure 6: Four interfacial profiles for the faster speed case. The black, red
and green wave profiles are all at an upper wave amplitude of AU ≈ 0.17 .
The blue profiles are for AU ≈ 0.25 . All except the black profiles display a
1 : 2 resonance.

solution branches were found to be independent of the numerical parameters,
and indicate the complex effects of non-linearity.

The solution profiles corresponding to the large crosses in Figure 5 are
shown in Figure 6. A 1 : 2 resonance develops at aroundAU = 0.17 (just after
the first of the profiles shown) and persists through the solution space. As the
solutions progress along this curve, the shorter wavelength component itself
becomes of moderate amplitude and at least some of the fine structure in the
(AU , F3) curve of Figure 5 may be attributed to this. There is a second set of
solutions (shown with a blue line) where the short wavelength component is
superposed with opposite phase to the solutions on the other branch. These
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may be traced right back to zero amplitude, giving a second small amplitude
solution, while convergent solutions are unavailable for amplitudes greater
than AU ≈ 0.31 . The lower layer Froude number of the small amplitude
solution is near to, but slightly smaller than, the linearized solution for k = 2 .

6 Conclusion

A wide array of nonlinear solutions were computed, agreeing closely with the
predictions of linear theory for small amplitudes. The focus of this work was
to obtain nonlinear resonance effects between various solution modes, and
these were found in abundance. Of particular interest were the excitation of
successive resonances and the highly irregular relationship between the wave
amplitude and lower layer speed parameters. Future work may consider the
stability through time of the finite amplitude solutions.
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