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Differential games with many pursuers when
evader moves on the surface of a cylinder
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Abstract

We study a pursuit differential game with many Pursuers when
the Evader moves on the surface of a given cylinder. Maximal speeds
of all players are equal. We consider two cases: in the first case, the
Pursuers move arbitrarily without phase constraints; and in the second
case, the Pursuers move on the surface of the cylinder. In both cases,
we give necessary and sufficient conditions to complete the pursuit. In
addition, in the second case, we show that pursuit differential game
on a cylinder are equivalent to a differential game on the plane with
many groups of Pursuers where each group consists of infinite number
of pursuers having the same control parameter.
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1 Introduction

Simple motion differential games are studied in many papers. Fundamental
results are obtained by Isaacs [1], Petrov [2], Petrosyan [3, 4], Pshenichnii [5],
and Chernous’ko [6].

The games with phase constraints are of special interest in studying the simple
motion differential games.

Simple motion pursuit games with many Pursuers are investigated by Ivanov [7]
under the assumption that all players move in a convex set and have equal max-
imal speed. In the works of Melikyan and Ovakimyan [8, 9], Kuchkarov [10, 11]
differential games are studied on the Riemannian Manifold. Azamov [12]
examined the evasion problem in the case when the evader moves along the
given curve and its maximal speed is greater than that of the Pursuer. In the
work of Kuchkarov and Rikhsiev [13], a pursuit differential games are investi-
gated when all players have identical maximal speed and the Evader moves
along a strictly convex smooth hypersurface. In the work of Ibragimov [14]
a pursuit-evasion differential game is studied in a convex compact set when
control functions of players are subject to integral constraints.

We study a pursuit differential game with many Pursuers when the Evader
moves on the surface of a given cylinder. Maximal speeds of all players are



2 Statement of the Problem E3

equal. We consider two cases: in the first case, the Pursuers move arbitrarily
without phase constraints and in the second case, Pursuers move on the
surface of the cylinder. The Pursuers use a counter strategy and the Evader
use a positional strategy. The trajectories of the Pursuers are defined as the
absolutely continuous solutions of the differential equations, the trajectory of
the Evader is defined as stepwise movement. In both cases, we give necessary
and sufficient conditions to complete the pursuit. In addition, in the second
case we show that pursuit differential games on a cylinder are equivalent to
a differential game on the plane with many groups of Pursuers where each
group consists of an infinite number of Pursuers having the same control
parameter.

2 Statement of the Problem

Let
M =

{
x = (x(1), x(2), x(3)) ∈ R3 | x2(1) + x2(2) = R2, x(3) ∈ R

}
(the sub indices in parentheses denote the coordinates of a point), and Mz,
z ∈M , be the tangent plane to the surface of the cylinder M at the point z.

The motions of the Pursuers Pi and the Evader E are described by

Pi : ẋi = ui , xi(0) = xi0 , E : ẏ = v , y(0) = y0 , (1)

where xi,y,ui, v ∈ R3; ui and v are control parameters, i = 1, 2, . . . ,m .

Definition 1. A measurable function v(·) = (v(t), t > 0) is called a control
of the Evader E if |v(t)| 6 1 , t > 0 , and the solution y(·) = (y(t), t > 0) of
the initial value problem ẏ = v(t), y(0) = y0, satisfies the inclusion

y(t) ∈M , t > 0 . (2)

Definition 2. A measurable function ui(·) = (ui(t), t > 0) is called a control
of the Pursuer Pi if |ui(t)| 6 1 , t > 0 , and the solution xi(·) = (xi(t), t > 0)
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of the initial value problem ẋi = ui(t), xi = xi0 satisfies the inclusion

xi(t) ∈ N , t > 0 , (3)

where N is a given set.

Definition 3. A function Ui : [0,∞)×N×M×B→ B , i = 1, 2, . . . ,m , is
called a strategy of the Pursuer Pi if for any control v(·) of the Evader, the
initial value problem{

ẏ = v(t), y(0) = y0 ,

ẋi = Ui (t, xi,y, v(t)) , xi(0) = xi0 ,

has a unique absolutely continuous solution (xi(·),y(·)), where the set B ={
z ∈ R3 | |z| 6 1

}
and the function ui(t) = ẋi(t) is a control of the Pursuer Pi.

The function xi(·) is called the trajectory of the Pursuer Pi generated by the
strategy Ui, the initial state (xi0,y0) and the control v(·).

Definition 4. We say that pursuit can be completed for the time T in game (1)–
(3) if there exist strategies U1,U2, . . . ,Um of the Pursuers P1,P2, . . . ,Pm ,
respectively, such that for any control v(·) of the Evader E the trajectories
satisfy the condition xi(t) = y(t) for some t ∈ (0, T ] and i ∈ {1, 2, . . . ,m}.

Definition 5. A function V : [0,∞) × Nm ×M −→ TM is called a strat-
egy of the Evader if for any (x1, x2, . . . , xm,y) ∈ Nm ×M holds, then the
inclusion V (t, x1, x2, . . . , xm,y) ∈ By , where TM is the tangent bundle of the
cylinder M as a manifold and By is unit ball on the tangent plane My with
centre at y ∈My .

Let ∆ = {0 = t0, t1, t2, . . . } be a partition of the interval [0,∞). The trajec-
tory y(·) of the Evader generated by Pursuer controls u1(·),u2(·), . . . ,um(·),
and a strategy V , and an initial position (x10, x20, . . . , xm0,y0) is constructed:

1. at the time ti, we determine the vector

vi = V (ti, x1(ti), x2(ti), . . . , xm(ti),y(ti)) , vi ∈ By(ti),
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and construct a geodesic γyi : [0; ti+1 − ti]→M for which

γ ′yi(0) = vi , γyi(0) = y(ti),
∣∣γ ′yi(s)∣∣ = 1 , s ∈ [0; ti+1 − ti];

2. the trajectory y(·) is defined as the solution of the equation

ẏ = γ ′yi(t− ti), t ∈ [ti; ti+1) , i = 1, 2, . . . , y(0) = y0.

Definition 6. We say that evasion is possible in game (1)–(3) if for the
given initial position (x10, x20, . . . , xm0,y0), xi0 6= y0 , there exist a partition ∆
of the interval [0,∞), and a strategy V of the Evader E such that for any
Pursuers’ controls u1(·),u2(·), . . . ,um(·) the corresponding trajectories satisfy
the inequalities xi(t) 6= y(t) for all t > 0 and i ∈ {1, 2, . . . ,m}.

We consider the following problems

Problem 1. Find a condition to complete the pursuit in the game (1)–(3)
and construct the strategy for the Pursuer.

Problem 2. Find a condition for the evasion to be possible in the game (1)–
(3) and construct the strategy for the Evader.

3 Main results

At the beginning part of this section we consider game (1)–(3) in the case
when the Pursuers move without phase constraints: N = R3.

Auxiliary game on a half cylinder In the differential game (1)–(3)
let one Pursuer exist (that is, m = 1) and the Pursuer moves without
phase constraints (that is, N = R3) and the Evader moves on the surface
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M+ =
{
z ∈M| z(3) > 0

}
, particularly, y0(3) > 0 . M+ is a half cylinder. For

short, we use x and u instead of x1 and u1.

Theorem 7. 1. If x0(3) 6 y0(3), then evasion is possible in the game (1)–
(3).

2. If x0(3) > y0(3), then pursuit can be completed in the game (1)–(3) for
a finite time T(x0,y0).

Proof:

1. Let an initial points x0,y0 be given such that 0 6 x0(3) 6 y0(3) and
x0 6= y0 . If the Evader uses the control v(t) = (0, 0, 1), t > 0 , then
according to property of obtuse triangle we have

|x0 − y(t)|
2 > |x0 − y0|

2
+ |y0 − y(t)|

2
= |x0 − y0|

2
+ t2 > t2.

On the other hand, for any control u(·) of the Pursuer |u(t)| 6 1 holds.
Then for the trajectory x(·) we have |x0 − x(t)| 6 t . Hence, by using
the triangle inequality, we obtain

|x(t) − y(t)| > |y(t) − x0|− |x(t) − x0| > t− t = 0 , t > 0 ,⇒ x(t) 6= y(t), t > 0 ,

that is evasion is possible.

2. Now, we turn to the case x0(3) > y0(3) > 0 and prove that pursuit can
be completed in the game (1)–(3), for some time T(x0,y0). Let

z0 =
(
0, 0, z0(3)

)
, z0(3) =

|x0|
2
− y20(3)

x0(3) − y0(3)
, t1 = |x0 − z0| .

We construct a strategy on an interval for the Pursuer [0, t1) to guarantee
the strict inequality x(3)(t1) > y(3)(t1) and equalities x(j)(t1) = 0 ,
j = 1, 2 . Then

|x0 − z0| < z0(3) − y0(3). (4)
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We construct the Pursuer’s strategy on [0, t1) as

U (t, x,y, v) = U0 =
z0 − x0
|z0 − x0|

.

Thus

x(t1) = x0 +

∫ t1
0

U0dt = x0 +

∫ t1
0

z0 − x0
|z0 − x0|

dt = x0 +
z0 − x0
|z0 − x0|

t1 = z0 .

Therefore
x(3)(t1) = z0(3), x(j)(t1) = 0 , j = 1, 2 . (5)

If the Evader uses an arbitrary control v(·), then by using (4) for his
trajectory y(t) we obtain

y(3)(t1) = y0(3) +

∫ t1
0

v(3)(t)dt 6 y0(3) +
∫ t1
0

∣∣v(3)(t)∣∣dt (6)

6 y0(3) + t1 = y0(3) + |x0 − z0| < y0(3) + z0(3) − y0(3) = z0(3).

We have, from (5) and (6), x(3)(t1) > y(3)(t1). We denote a = x(3)(t1)
and b = y(3)(t1). Then a > b .

We continue constructing of the strategy for the Pursuer on the inter-
val [t1,∞) by the following way. Let r0 be a root of the equation

a− b = R ln
R+
√
R2 − τ2

τ
.

Since a > b , it is not difficult to check that the last equation has a
unique solution τ = r0 ∈ (0,R). Let

g (s) =

{
f (r0) − (s− r0)

√
R2 − r20/r0 , 0 6 s < r0 ,

f (s) , r0 6 s 6 R ,

where

f(s) = R

(
ln
R+
√
R2 − s2

s
−

√
R2 − s2

R

)
, 0 < s 6 R .
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Then

g(0) = a− b , g(R) = 0 , (7)

dg(s)

ds
=

{
−r−10

√
R2 − r20, 0 6 s 6 r0 ,

−s−1
√
R2 − s2, r0 < s 6 R .

(8)

We replace the coordinates of the points x and y with the cylindrical
coordinates (ξ,φ, z(3)). Then the third coordinates of these points are
not changed. If (r,ϕ, x(3)) and (R,ψ,y(3)) are cylindrical coordinates
of the points x and y, respectively, then

x(1) = r cosϕ , x(2) = r sinϕ , y(1) = R cosψ , y(2) = R sinψ .

Therefore r =
√
x2(1) + x

2
(2), and from (1) we have

u(1) = ṙ cosϕ− rϕ̇ sinϕ , u(2) = ṙ sinφ+ rϕ̇ cosϕ ,

v(1) = −Rψ̇ sinψ , v(2) = Rψ̇ cosψ,

and the equality x = y is equivalent to the system of equalities r = R ,
ϕ = ψ , x(3) = y(3).

Denoting

ṙ = τ , ϕ̇ = α , ẋ(3) = u(3),

Ṙ = 0 , ψ̇ = β , ẏ(3) = v(3),

then vectors (τ,α,u(3)) and (0,β, v(3)) on the cylindrical coordinates
systems are the parameters of control of the Pursuer and Evader respec-
tively, and the conditions |u| 6 1 and |v| 6 1 take the forms

τ2 + r2α2 + u2(3) 6 1 , (9)

R2β2 + v2(3) 6 1 . (10)
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As x(1)(t1) = x(2)(t1) = 0 , we consider that ϕ(t1) = ψ(t1) = 0 .

Now on the cylindrical coordinate system we define a strategy U of the
Pursuer at t > t1

τ = h
(
r, v(3)

)
, α = β , u(3) = v(3) + h

(
r, v(3)

)
gr , (11)

if r 6 R , and τ = 0 , α = 0 , u(3) = 0 if r > R , where gr = dg/dr and

h(r, v(3)) =
−grv(3) +

√
g2rv

2
(3) + (1+ g2r)

(
1− v2(3)

)
R2−r2

R2

1+ g2r
. (12)

Here, we note that
∣∣v(3)∣∣ 6 1 and r 6 R so the radicand is nonnegative,

and also h(r, v(3)) is a non-negative solution of the quadratic equation

h2
(
1+ g2r

)
+ 2hgrv(3) −

(
1− v2(3)

)R2 − r2
R2

= 0 . (13)

In addition, as the function gr, 0 6 r 6 R , is continuous (see (8)), if
the Evader uses an arbitrary control (0,β(t), v(3)(t)), t > t1 , then the
initial value problem

ṙ = h(r, v(3)(t)), ϕ̇ = β(t), r(t1) = ϕ(t1) = 0 ,

ẋ(3) = v(3)(t) + h(r, v(3)(t))gr , x(3)(t1) = a , (14)

Ṙ = 0 , ψ̇ = β(t), ẏ(3)(t) = v(3)(t), ϕ(t1) = 0 , y(3)(t1) = b ,

has a unique absolutely continuous solution (r(t),ϕ(t), x(3)(t)) and
(R,ψ(t),y(3)(t)), t > t1 .

First we show that for the strategy (11) the inequality (9) holds. If
r 6 R , then, using the inequality β2 6 R−2(1− v2(3)) (see (10)) and

equality (13),

τ2 + r2α2 + u2(3)

= h2(r, v(3)) + r
2β2 + v2(3) + 2v(3)h(r, v(3))gr + h

2(r, v(3))g
2
r
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6 h2(r, v(3))(1+ g
2
r) +

r2

R2
(1− v2(3)) + v

2
(3) + 2v(3)h(r, v(3))gr

= h2(r, v(3))
(
1+ g2r

)
+ 2h(r, v(3))grv(3) −

(
1− v2(3)

) R2 − r2
R2

+ 1

= 1 .

If r > R , then τ2 + r2α2 + u2(3) = 0 .

We now show that, if the Evader uses an arbitrary control (0,β(t), v(3)(t)),
t > t1 , then for the solution of the initial problem (14) r(t) = R ,
α(t) = β(t) and x(3)(t) = y(3)(t) at some t > t1 .

Let t > t1 and r < r0 . Then using (8) we obtain from (13) that (for
simplicity we do not write arguments t)

ṙ
R

r0
−

√
R2 − r20
r0

v(3) = (1+ g2r)h(r, v(3)) + grv(3)

=

√
g2rv

2
(3) + (1+ g2r)

(
1− v2(3)

) R2 − r2
R2

=

√
R2 − r20
r20

v2(3) + (1− v2(3))
R2 − r2

r20

=

√
R2 − r20
r20

+ (1− v2(3))
r20 − r

2

r20

>

√
R2 − r20
r0

.

Consequently,

ṙ >

√
R2 − r20
R

v(3) +

√
R2 − r20
R

.

Integrating the last inequality from t1 to t gives

r(t) − r(t1) >

√
R2 − r20
R

(
y(3)(t) − y(3)(t1) + t− t1

)
. (15)
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As y(3)(t) > 0, t > 0 , and r(t1) = 0 , then (15) allows us to conclude
that r(t2) = r0 at some t2 such that

t2 6
Rr0√
R2 − r20

+ y(3)(t1) + t1 .

Let t > t2 . Note that if r(t) < R , then ṙ(t) > 0 and hence r(t) > r(t2).
As the way shown above, combining (8) with (13) we obtain

ṙ
R

r
−

√
R2 − r2

r
v(3) = (1+ g2r)h(r, v(3)) + grv(3)

=

√
R2 − r2

r2
v2(3) + (1− v2(3))

R2 − r2

r2

=

√
R2 − r2

r
.

Consequently,

ṙ =

√
R2 − r2

R
v(3) +

√
R2 − r2

R
.

Therefore
ṙ√

R2 − r2
=
1

R

(
v(3) + 1

)
.

We integrate these equality to have

arcsin
r(t)

R
− arcsin

r0

R
=
1

R

(
y(3)(t) − y(3)(t2) + t− t2

)
. (16)

As y(3)(t) > 0 and arcsin r0
R
> 0, by (16) there exists a number t3 <

πR
2
+ t2 + y(3)(t2) such that arcsin r(t3)

R
= π

2
and so r(t3) = R .

Now consider the third coordinate of point x. From (11) we obtain

x(3)(t3) = x(3)(t1) +

∫ t3
t1

u(3)(t)dt
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= x(3)(t1) +

∫ t3
t1

(
v(3)(t) + h(r(t), v(3)(t))gr(r(t))

)
dt

= x(3)(t1) + y(3)(t3) − y(3)(t1) +

∫ t3
t1

ṙ(t)gr(r(t))dt

= a+ y(3)(t3) − b+ g(r(t3)) − g(r(t1)).

Taking into account the equalities r(t1) = 0 and r(t3) = R , and (7),
from the last equality

x(3)(t3) = a+ y(3)(t3) − b+ g(R) − g(0) = y(3)(t3). (17)

From the equalities ϕ(t1) = ψ(t1) = 0 and α(t) = β(t), t > t1 , we
have ϕ(t) = ψ(t) = 0 for all t > t1 . Then this equality together
with (17) implies x(t3) = y(t3).

In the final part of the proof of the theorem, we observe that using
estimates for t2 and t3 above and inequality y(3)(t) 6 y0(3) + t, t > 0 ,
we obtain the following estimate for the time

T(x0,y0) = t3 6
Rπ

2
+

2Rr0√
R2 − r20

+ 4|x0 − z0|+ 3y0(3)

for which the pursuit can be completed.

The proof of Theorem 7 is complete. ♠

Remark 8. If y(t) ∈
{
z ∈M | 0 6 z(3) 6 a

}
, t > 0 , then pursuit can be

completed in the game (1)–(3) from any initial positions.

The General case: N = R3 Here we study the case (1)–(3), when the
Pursuers move throughout the space and the Evader moves on the M. We
obtain the following corollary of Theorem 7.

Corollary 9. If m = 1 , then for any initial position (x0,y0), x0 6= y0 ,
pursuit cannot be completed in the differential game (1)–(3).
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Theorem 10. 1. If there exist some indices i, j ∈ {1, 2, . . . ,m} such that
xi0(3) < y0(3) < xj0(3), then pursuit can be completed for some time
T(x10, x20, . . . , xm0,y0) in the game (1)–(3).

2. If i, j ∈ {1, 2, . . . ,m} do not exist to satisfy xi0(3) < y0(3) < xj0(3), then
evasion is possible.

Proof:

1. Let there exist indices i, j ∈ {1, 2, . . . ,m} to satisfy xi0(3) < y0(3) < xj0(3).
Without loss of generality we assume that i = 1 , j = 2 and y0(3) = 0 .
We introduce the fictitious Evaders ȳ1 and ȳ2

ȳi(j)(t) = yi(j)(t), j = 1, 2 , ȳi(3)(t) = (−1)i
∣∣yi(3)(t)∣∣ , t > 0 .

The points ȳ1 and ȳ2 move with maximal speed equal to 1 on the
half cylinders M− =

{
z ∈M | z(3) 6 0

}
and M+ =

{
z ∈M | z(3) > 0

}
respectively.

Moreover one of the points ȳ1(t) and ȳ2(t) coincides with y(t), t > 0 .
So if ȳi(t) = xi(t) for both i = 1 and i = 2 at some t > 0 , then
y(t) = xi(t) at some i = 1, 2 . By Theorem 7 there exist strategies U1
and U2 of pursuers P1 and P2, and number t∗ such that ȳi(t) = xi(t),
i = 1, 2 , t > t∗. Therefore, pursuit can be completed at some time
T(x0,y0) 6 t∗ .

2. In this case we assume that xi0(3) 6 y0(3), i = 1, 2, . . . ,m . We show
similarly to the beginning part of the proof of Theorem 7 that the
Evader using the control v(t) = (0, 0, 1), t > 0 ensures xi(t) 6= y(t),
t > 0 , i = 1, 2, . . . ,m .

The proof of Theorem 10 is complete. ♠
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The case when all players move on the surface of the cylinder We
consider the differential game (1)–(3) when N =M . This means all Pursuers
as well as the Evader move on the surface of the cylinder M.

Theorem 11. 1. If there exist indices i, j ∈ {1, 2, . . . ,m} with the property
that xi0(3) < y0(3) < xj0(3) and m > 3 , then pursuit can be completed in
the game (1)–(3) for some time T(x10, x20, . . . , xm0,y0).

2. If either xi0(3) 6 y0(3) or xi0(3) > y0(3) for all i ∈ {1, 2, . . . ,m}, then
evasion is possible in the game (1)–(3).

Proof: To prove Theorem 11 we reduce the game (1)–(3) on the cylinder M
to the specific game in the plane R2. Such a reduction is conducted by the
multivalue mapping that is inverse to the universal covering F : R2 → M

which is local isometry (Nikulin and Shafarevich [15]). If z ∈M , then the
aggregate of its preimages F−1(z) consists of the class of denumerable number
of points equivalent to each other . . . z−2, z−1, z0, z1, z2, . . . ∈ R2 such that

zj(1) = z
0
(1) + 2jπR , zj(2) = z

0
(2), j = ±1,±2, . . . . (18)

Let F−1(y) =
{
yj | j ∈ Z

}
, F−1(xi) =

{
xji | j ∈ Z

}
, i = 1, 2, . . . ,m . Then, the

equality xi = y is equivalent to xji = yk for some j,k ∈ Z . This property
allows us to reduce the formulated game (1)–(3) to the game in the Euclidean
plane with many groups of Pursuers and one Evader. Every group consists
of countably many pursuers controlled by one parameter. The equations of
motions are

ẋji = ui , xji(t0) = x
j
i0 , i = 1, 2, . . . ,m , j ∈ Z , ẏ = v , y(t0) = y0,

(19)
where xji,y,ui, v ∈ R2; ui and v are control parameters of the group of
Pursuers F(xi) and the Evader y, respectively, and they satisfy the conditions

|ui| 6 1 , i = 1, 2, . . . ,m , |v| 6 1 . (20)
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Pursuit can be completed in game (18)–(20) if xji(t) = y(t) for some i ∈
{1, 2, . . . ,m} , j ∈ Z and t > 0 . ♠

According to the properties of F mentioned above, pursuit is completed in
both games (1)–(3) and (18)–(20) simultaneously. Therefore, we study the
game (18)–(20).

Theorem 12. 1. If there exist indices i, j ∈ {1, 2, . . . ,m} with the property
that x0i0(2) < y0(2) < x

0
j0(2) and m > 3 , then pursuit can be completed in

the game (18)–(20) for some time T(x10, x20, . . . , xm0,y0).

2. If either x0i0(2) 6 y0(2) or x0i0(2) > y0(2) for all i ∈ {1, 2, . . . ,m}, or

m < 3 , then evasion is possible in the game (18)–(20).

Proof:

1. Let x0i0(2) < y0(2) < x
0
k0(2) for some i,k ∈ {1, 2, . . . ,m} and m > 3 . We

prove that pursuit can be completed in the game (18)–(20). Without
loss of generality we assume x010(2) < y0(2) < x

0
20(2), x

0
i0(1) < y0(1), i =

1, 2 , and m = 3 . Then, by (18) there exists j ∈ Z such that y0 ∈
intco{x010, x

0
20, x

j
30}, where intcoA denotes the interior convex hull of

the set A. We consider only motions of the pursuers x01, x
0
2 and xj3,

therefore, for short we write without superscripts, as x1, x2 and x3. Now
the motions of the Pursuers are described by the equations ẋi = ui ,
|ui| 6 1 , i = 1, 2, 3 .

Now construct a strategy of the Pursuers as strategy of parallel approach
(p-strategy)

Ui(v) = v+ λi(v)ei , (21)

where

ei =
y0 − xi
|y0 − xi|

, λi(v) = − 〈v, ei〉+
√
1− |v|

2
+ (〈v, ei〉)2 , i = 1, 2, 3 .
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and 〈·, ·〉 is the inner product in R2.

As |v| 6 1 and λi(v) > 0, i = 1, 2, 3 , from the condition that y0 ∈
intco{x10, x20, x30},

min
|v|61

3∑
i=1

λi(v) > 0 .

We denote

T =

(
3∑
i=1

|xi0 − y0|

)(
min
|v|61

3∑
i=1

λi(v)

)−1

.

Let the Evader use an arbitrary control v(·) and the Pursuers uses the
p-strategy and y(·), xi(·), i = 1, 2, 3 , his corresponding trajectories.
Observe that if the Pursuers use the p-strategy, then the vectors xi(t)−
y(t) and ei are parallel at all time (Petrosyan [3, 4]).

We assume the contrary, that is xi(t) 6= y(t), t ∈ [0, T ]. Then, for
i = 1, 2, 3 by (21) we have

d

dt
|xi(t) − y(t)| =

〈
xi(t) − y(t)

|xi(t) − y(t)|
,Ui(v(t)) − v(t)

〉
=

〈
xi(t) − y(t)

|xi(t) − y(t)|
, v(t) + λi (v(t)) ei − v(t)

〉
= −λi(v(t)).

Hence,

3∑
i=1

d

dt
|xi(t) − y(t)| = −

3∑
i=1

λi(v(t)) 6 −min
|v|61

3∑
i=1

λi(v).

Integrating the last inequality from 0 to T , we obtain

0 <

3∑
i=1

|xi(t) − y(t)| 6
3∑
i=1

|xi0 − y0|− T min
|v|61

3∑
i=1

λi(v) = 0 ,
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which contradicts our assumption. Thus pursuit can be completed for
the time T .

2. Let x0i0(2) < y0(2) for all i = 1, 2, . . . ,m . Then as in the proof of
Theorem 7, we prove that the evasion is possible if the Evader uses the
control v(t) = (0, 1), t > 0 .

Now we consider the case m < 3 . Let m = 2 and x010(2) < y0(2) < x
0
20(2)

(otherwise the above arguments imply that evasion is possible). We
prove that for any initial position, evasion is possible.

We construct the strategy of the Evader by conditions

〈V , xj11 − xj22 〉 = 0 , 〈V , xjii − y〉 6 0 , i = 1, 2 , (22)

where xjii ∈ {xji | j ∈ Z} = F−1(xi) and

min
j∈Z

∣∣∣y− xji

∣∣∣ = ∣∣∣y− xjii

∣∣∣ , i = 1, 2 . (23)

By (18) and (23), ∣∣∣y− xji

∣∣∣ > πR , j 6= ji , (24)

where ji, i = 1, 2 , satisfy (23).

Let ∆ = {0 = t0, t1, t2, . . . } be a partition of the interval [0,∞) with
ti = iπR/4 . We consider the trajectory y(·) generated by the strategy V
and the partition ∆. We assume that y(t) 6= xji(t) for all i = 1, 2, j ∈ Z ,
and t ∈ [0, tk], where k is some non-negative integer and then prove
that y(t) 6= xji(t) for all i = 1, 2, j ∈ Z , and t ∈ [tk, tk+1]. Without loss
of generality we consider that xjii = x0i , that is, ji = 0, i = 1, 2. Then
by (22) we have∣∣y(t) − x0i (tk)∣∣ = |y(tk) − x(tk) + (t− tk)V | > |(t− tk)V |

= t− tk >

∣∣∣∣∫ t
tk

ui(s)ds

∣∣∣∣
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=
∣∣x0i (t) − x0i (tk)∣∣ , tk 6 t 6 tk+1 , i = 1, 2 .

Consequently, y(t) 6= x0i (t), i = 1, 2 , t ∈ [tk, tk+1]. For j 6= 0 by
using (24) and ti = iπR/4 we obtain∣∣∣y(t) − xji(t)∣∣∣ = ∣∣∣∣y(tk) − xji(tk) + (t− tk)V −

∫ t
tk

ui(s)ds

∣∣∣∣
>
∣∣∣y(tk) − xji(tk)∣∣∣− |(t− tk)V |−

∣∣∣∣∫ t
tk

ui(s)ds

∣∣∣∣
> πR− (t− tk) − (t− tk)

>
πR

2
, t ∈ [tk, tk+1], i = 1, 2 .

This implies that y(t) 6= xji(t), t ∈ [tk, tk+1], j ∈ Z , i = 1, 2 . Therefore,
by induction the inequalities y(t) 6= xji(t) hold for any t ∈ [0,∞), j ∈ Z ,
and i = 1, 2.

The proof of Theorem 12 is complete. ♠
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