Differential games with many pursuers when evader moves on the surface of a cylinder

A. Sh. Kuchkarov ${ }^{1}$
M. H. Risman ${ }^{2}$
A. H. Malik ${ }^{3}$
(Received 28 June 2010; revised 9 December 2011)

Abstract

We study a pursuit differential game with many Pursuers when the Evader moves on the surface of a given cylinder. Maximal speeds of all players are equal. We consider two cases: in the first case, the Pursuers move arbitrarily without phase constraints; and in the second case, the Pursuers move on the surface of the cylinder. In both cases, we give necessary and sufficient conditions to complete the pursuit. In addition, in the second case, we show that pursuit differential game on a cylinder are equivalent to a differential game on the plane with many groups of Pursuers where each group consists of infinite number of pursuers having the same control parameter.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/3280 gives this article, © Austral. Mathematical Soc. 2012. Published January 12, 2012. ISSN 1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made otherwise available on the internet; instead link directly to this URL for this article.

Contents

1 Introduction E2
2 Statement of the Problem E3
3 Main results E5
References E18

1 Introduction

Simple motion differential games are studied in many papers. Fundamental results are obtained by Isaacs [1], Petrov [2], Petrosyan [3, 4], Pshenichnii [5], and Chernous'ko [6].

The games with phase constraints are of special interest in studying the simple motion differential games.

Simple motion pursuit games with many Pursuers are investigated by Ivanov [7] under the assumption that all players move in a convex set and have equal maximal speed. In the works of Melikyan and Ovakimyan [8, 9], Kuchkarov [10, 11] differential games are studied on the Riemannian Manifold. Azamov [12] examined the evasion problem in the case when the evader moves along the given curve and its maximal speed is greater than that of the Pursuer. In the work of Kuchkarov and Rikhsiev [13], a pursuit differential games are investigated when all players have identical maximal speed and the Evader moves along a strictly convex smooth hypersurface. In the work of Ibragimov [14] a pursuit-evasion differential game is studied in a convex compact set when control functions of players are subject to integral constraints.

We study a pursuit differential game with many Pursuers when the Evader moves on the surface of a given cylinder. Maximal speeds of all players are
equal. We consider two cases: in the first case, the Pursuers move arbitrarily without phase constraints and in the second case, Pursuers move on the surface of the cylinder. The Pursuers use a counter strategy and the Evader use a positional strategy. The trajectories of the Pursuers are defined as the absolutely continuous solutions of the differential equations, the trajectory of the Evader is defined as stepwise movement. In both cases, we give necessary and sufficient conditions to complete the pursuit. In addition, in the second case we show that pursuit differential games on a cylinder are equivalent to a differential game on the plane with many groups of Pursuers where each group consists of an infinite number of Pursuers having the same control parameter.

2 Statement of the Problem

Let

$$
M=\left\{x=\left(x_{(1)}, x_{(2)}, x_{(3)}\right) \in \mathbb{R}^{3} \mid x_{(1)}^{2}+x_{(2)}^{2}=R^{2}, x_{(3)} \in \mathbb{R}\right\}
$$

(the sub indices in parentheses denote the coordinates of a point), and M_{z}, $z \in M$, be the tangent plane to the surface of the cylinder M at the point z.

The motions of the Pursuers P_{i} and the Evader E are described by

$$
\begin{equation*}
P_{i}: \dot{x}_{i}=u_{i}, x_{i}(0)=x_{i 0}, \quad E: \dot{y}=v, y(0)=y_{0}, \tag{1}
\end{equation*}
$$

where $\boldsymbol{x}_{\mathrm{i}}, \mathfrak{y}, \mathfrak{u}_{\mathfrak{i}}, v \in \mathbb{R}^{3} ; \mathfrak{u}_{\mathrm{i}}$ and v are control parameters, $\mathfrak{i}=1,2, \ldots, m$.
Definition 1. A measurable function $v(\cdot)=(v(\mathrm{t}), \mathrm{t} \geqslant 0)$ is called a control of the Evader E if $|\mathrm{v}(\mathrm{t})| \leqslant 1, \mathrm{t} \geqslant 0$, and the solution $\mathrm{y}(\cdot)=(\mathrm{y}(\mathrm{t}), \mathrm{t} \geqslant 0)$ of the initial value problem $\dot{\mathrm{y}}=\boldsymbol{v}(\mathrm{t}), \mathrm{y}(0)=\mathrm{y}_{0}$, satisfies the inclusion

$$
\begin{equation*}
y(t) \in M, \quad t \geqslant 0 . \tag{2}
\end{equation*}
$$

Definition 2. A measurable function $\mathfrak{u}_{i}(\cdot)=\left(\mathfrak{u}_{\mathfrak{i}}(\mathrm{t}), \mathrm{t} \geqslant 0\right)$ is called a control of the Pursuer P_{i} if $\left|\mathfrak{u}_{\mathrm{i}}(\mathrm{t})\right| \leqslant 1, \mathrm{t} \geqslant 0$, and the solution $\mathrm{x}_{\mathrm{i}}(\cdot)=\left(\mathrm{x}_{\mathrm{i}}(\mathrm{t}), \mathrm{t} \geqslant 0\right)$
of the initial value problem $\dot{x}_{i}=\mathfrak{u}_{\mathfrak{i}}(\mathrm{t}), \mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{io}}$ satisfies the inclusion

$$
\begin{equation*}
x_{i}(t) \in N, \quad t \geqslant 0, \tag{3}
\end{equation*}
$$

where N is a given set.
Definition 3. A function $\mathrm{U}_{\mathrm{i}}:[0, \infty) \times \mathrm{N} \times \mathrm{M} \times \mathrm{B} \rightarrow \mathrm{B}, \mathfrak{i}=1,2, \ldots, \mathrm{~m}$, is called a strategy of the Pursuer P_{i} if for any control $\boldsymbol{v}(\cdot)$ of the Evader, the initial value problem

$$
\begin{cases}\dot{y}=v(t), & y(0)=y_{0} \\ \dot{x}_{i}=U_{i}\left(t, x_{i}, y, v(t)\right), & x_{i}(0)=x_{i 0}\end{cases}
$$

has a unique absolutely continuous solution $\left(\mathrm{x}_{\mathrm{i}}(\cdot), \mathrm{y}(\cdot)\right)$, where the set $\mathrm{B}=$ $\left\{z \in \mathbb{R}^{3}| | z \mid \leqslant 1\right\}$ and the function $\mathfrak{u}_{i}(\mathrm{t})=\dot{x}_{i}(\mathrm{t})$ is a control of the Pursuer P_{i}. The function $\mathrm{x}_{\mathrm{i}}(\cdot)$ is called the trajectory of the Pursuer P_{i} generated by the strategy U_{i}, the initial state $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{0}\right)$ and the control $v(\cdot)$.

Definition 4. We say that pursuit can be completed for the time T in game (1)(3) if there exist strategies $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{m}}$ of the Pursuers $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\mathrm{m}}$, respectively, such that for any control $v(\cdot)$ of the Evader E the trajectories satisfy the condition $\mathrm{x}_{\mathrm{i}}(\mathrm{t})=\mathrm{y}(\mathrm{t})$ for some $\mathrm{t} \in(0, \mathrm{~T}]$ and $\mathrm{i} \in\{1,2, \ldots, \mathrm{~m}\}$.

Definition 5. A function $\mathrm{V}:[0, \infty) \times \mathrm{N}^{\mathrm{m}} \times \mathrm{M} \longrightarrow \mathrm{TM}$ is called a strategy of the Evader if for any $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}, \mathrm{y}\right) \in \mathrm{N}^{\mathrm{m}} \times \mathrm{M}$ holds, then the inclusion $\mathrm{V}\left(\mathrm{t}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{m}}, \mathrm{y}\right) \in \mathrm{B}_{\mathrm{y}}$, where TM is the tangent bundle of the cylinder M as a manifold and B_{y} is unit ball on the tangent plane M_{y} with centre at $\mathrm{y} \in \mathrm{M}_{\mathrm{y}}$.

Let $\Delta=\left\{0=t_{0}, t_{1}, t_{2}, \ldots\right\}$ be a partition of the interval $[0, \infty)$. The trajectory $y(\cdot)$ of the Evader generated by Pursuer controls $\mathfrak{u}_{1}(\cdot), \mathfrak{u}_{2}(\cdot), \ldots, \mathfrak{u}_{\mathfrak{m}}(\cdot)$, and a strategy V, and an initial position ($x_{10}, x_{20}, \ldots, x_{m 0}, y_{0}$) is constructed:

1. at the time t_{i}, we determine the vector

$$
v_{i}=V\left(t_{i}, x_{1}\left(t_{i}\right), x_{2}\left(t_{i}\right), \ldots, x_{m}\left(t_{i}\right), y\left(t_{i}\right)\right), \quad v_{i} \in B_{y\left(t_{i}\right)},
$$

and construct a geodesic $\gamma_{y i}:\left[0 ; t_{i+1}-t_{i}\right] \rightarrow M$ for which

$$
\gamma_{y i}^{\prime}(0)=v_{i}, \quad \gamma_{y i}(0)=y\left(t_{i}\right), \quad\left|\gamma_{y i}^{\prime}(s)\right|=1, \quad s \in\left[0 ; t_{i+1}-t_{i}\right] ;
$$

2. the trajectory $y(\cdot)$ is defined as the solution of the equation

$$
\dot{y}=\gamma_{y i}^{\prime}\left(t-t_{i}\right), \quad t \in\left[t_{i} ; t_{i+1}\right), \quad i=1,2, \ldots, \quad y(0)=y_{0}
$$

Definition 6. We say that evasion is possible in game (1)-(3) if for the given initial position $\left(\mathrm{x}_{10}, \mathrm{x}_{20}, \ldots, \mathrm{x}_{\mathrm{m} 0}, \mathrm{y}_{0}\right), \mathrm{x}_{\mathrm{i} 0} \neq \mathrm{y}_{0}$, there exist a partition Δ of the interval $[0, \infty)$, and a strategy V of the Evader E such that for any Pursuers' controls $\mathfrak{u}_{1}(\cdot), \mathfrak{u}_{2}(\cdot), \ldots, \mathfrak{u}_{\mathfrak{m}}(\cdot)$ the corresponding trajectories satisfy the inequalities $\mathrm{x}_{\mathrm{i}}(\mathrm{t}) \neq \mathrm{y}(\mathrm{t})$ for all $\mathrm{t} \geqslant 0$ and $\mathfrak{i} \in\{1,2, \ldots, \mathrm{~m}\}$.

We consider the following problems

Problem 1. Find a condition to complete the pursuit in the game (1)-(3) and construct the strategy for the Pursuer.

Problem 2. Find a condition for the evasion to be possible in the game (1)(3) and construct the strategy for the Evader.

3 Main results

At the beginning part of this section we consider game (1)-(3) in the case when the Pursuers move without phase constraints: $N=\mathbb{R}^{3}$.

Auxiliary game on a half cylinder In the differential game (1)-(3) let one Pursuer exist (that is, $m=1$) and the Pursuer moves without phase constraints (that is, $N=\mathbb{R}^{3}$) and the Evader moves on the surface
$M_{+}=\left\{z \in M \mid z_{(3)} \geqslant 0\right\}$, particularly, $y_{0(3)} \geqslant 0 . M_{+}$is a half cylinder. For short, we use x and u instead of x_{1} and u_{1}.

Theorem 7. 1. If $x_{0(3)} \leqslant y_{0(3)}$, then evasion is possible in the game (1)(3).
2. If $x_{0(3)}>y_{0(3)}$, then pursuit can be completed in the game (1)-(3) for a finite time $\mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.

Proof:

1. Let an initial points x_{0}, y_{0} be given such that $0 \leqslant x_{0(3)} \leqslant y_{0(3)}$ and $x_{0} \neq y_{0}$. If the Evader uses the control $v(t)=(0,0,1), t \geqslant 0$, then according to property of obtuse triangle we have

$$
\left|x_{0}-y(t)\right|^{2} \geqslant\left|x_{0}-y_{0}\right|^{2}+\left|y_{0}-y(t)\right|^{2}=\left|x_{0}-y_{0}\right|^{2}+t^{2}>t^{2} .
$$

On the other hand, for any control $u(\cdot)$ of the Pursuer $|u(t)| \leqslant 1$ holds. Then for the trajectory $x(\cdot)$ we have $\left|x_{0}-x(t)\right| \leqslant t$. Hence, by using the triangle inequality, we obtain

$$
\begin{aligned}
& |x(t)-y(t)| \geqslant\left|y(t)-x_{0}\right|-\left|x(t)-x_{0}\right|>t-t=0, \quad t \geqslant 0, \\
& \Rightarrow x(t) \neq y(t), \quad t \geqslant 0
\end{aligned}
$$

that is evasion is possible.
2. Now, we turn to the case $x_{0(3)}>y_{0(3)} \geqslant 0$ and prove that pursuit can be completed in the game (1)-(3), for some time $\mathrm{T}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. Let

$$
z_{0}=\left(0,0, z_{0(3)}\right), \quad z_{0(3)}=\frac{\left|x_{0}\right|^{2}-y_{0(3)}^{2}}{x_{0(3)}-y_{0(3)}}, \quad t_{1}=\left|x_{0}-z_{0}\right| .
$$

We construct a strategy on an interval for the Pursuer $\left[0, t_{1}\right)$ to guarantee the strict inequality $x_{(3)}\left(t_{1}\right)>y_{(3)}\left(t_{1}\right)$ and equalities $x_{(j)}\left(t_{1}\right)=0$, $j=1,2$. Then

$$
\begin{equation*}
\left|x_{0}-z_{0}\right|<z_{0(3)}-y_{0(3)} . \tag{4}
\end{equation*}
$$

We construct the Pursuer's strategy on $\left[0, t_{1}\right)$ as

$$
\mathrm{u}(\mathrm{t}, \mathrm{x}, \mathrm{y}, v)=\mathrm{U}_{0}=\frac{z_{0}-x_{0}}{\left|z_{0}-x_{0}\right|} .
$$

Thus

$$
x\left(t_{1}\right)=x_{0}+\int_{0}^{t_{1}} u_{0} d t=x_{0}+\int_{0}^{t_{1}} \frac{z_{0}-x_{0}}{\left|z_{0}-x_{0}\right|} d t=x_{0}+\frac{z_{0}-x_{0}}{\left|z_{0}-x_{0}\right|} t_{1}=z_{0} .
$$

Therefore

$$
\begin{equation*}
x_{(3)}\left(\mathrm{t}_{1}\right)=z_{0(3)}, \quad x_{(j)}\left(\mathrm{t}_{1}\right)=0, \quad j=1,2 . \tag{5}
\end{equation*}
$$

If the Evader uses an arbitrary control $v(\cdot)$, then by using (4) for his trajectory $y(t)$ we obtain

$$
\begin{align*}
y_{(3)}\left(t_{1}\right) & =y_{0(3)}+\int_{0}^{t_{1}} v_{(3)}(t) d t \leqslant y_{0(3)}+\int_{0}^{t_{1}}\left|v_{(3)}(t)\right| d t \tag{6}\\
& \leqslant y_{0(3)}+t_{1}=y_{0(3)}+\left|x_{0}-z_{0}\right|<y_{0(3)}+z_{0(3)}-y_{0(3)}=z_{0(3)} .
\end{align*}
$$

We have, from (5) and (6), $x_{(3)}\left(t_{1}\right)>y_{(3)}\left(t_{1}\right)$. We denote $a=x_{(3)}\left(t_{1}\right)$ and $b=y_{(3)}\left(t_{1}\right)$. Then $a>b$.

We continue constructing of the strategy for the Pursuer on the interval $\left[\mathrm{t}_{1}, \infty\right)$ by the following way. Let r_{0} be a root of the equation

$$
a-b=R \ln \frac{R+\sqrt{R^{2}-\tau^{2}}}{\tau} .
$$

Since $\mathrm{a}>\mathrm{b}$, it is not difficult to check that the last equation has a unique solution $\tau=r_{0} \in(0, R)$. Let

$$
g(s)= \begin{cases}f\left(r_{0}\right)-\left(s-r_{0}\right) \sqrt{R^{2}-r_{0}^{2}} / r_{0}, & 0 \leqslant s<r_{0}, \\ f(s), & r_{0} \leqslant s \leqslant R,\end{cases}
$$

where

$$
f(s)=R\left(\ln \frac{R+\sqrt{R^{2}-s^{2}}}{s}-\frac{\sqrt{R^{2}-s^{2}}}{R}\right), \quad 0<s \leqslant R .
$$

Then

$$
\begin{align*}
& g(0)=a-b, \quad g(R)=0, \tag{7}\\
& \frac{d g(s)}{d s}= \begin{cases}-r_{0}^{-1} \sqrt{R^{2}-r_{0}^{2}}, & 0 \leqslant s \leqslant r_{0}, \\
-s^{-1} \sqrt{R^{2}-s^{2}}, & r_{0}<s \leqslant R .\end{cases} \tag{8}
\end{align*}
$$

We replace the coordinates of the points x and y with the cylindrical coordinates $\left(\xi, \phi, z_{(3)}\right)$. Then the third coordinates of these points are not changed. If ($\mathrm{r}, \varphi, \mathrm{x}_{(3)}$) and ($\mathrm{R}, \boldsymbol{\psi}, \mathrm{y}_{(3)}$) are cylindrical coordinates of the points x and y, respectively, then

$$
x_{(1)}=r \cos \varphi, \quad x_{(2)}=r \sin \varphi, \quad y_{(1)}=R \cos \psi, \quad y_{(2)}=R \sin \psi
$$

Therefore $r=\sqrt{x_{(1)}^{2}+\chi_{(2)}^{2}}$, and from (1) we have

$$
\begin{array}{ll}
u_{(1)}=\dot{r} \cos \varphi-r \dot{\varphi} \sin \varphi, & u_{(2)}=\dot{r} \sin \phi+r \dot{\varphi} \cos \varphi \\
v_{(1)}=-R \dot{\psi} \sin \psi, & v_{(2)}=R \dot{\psi} \cos \psi,
\end{array}
$$

and the equality $x=y$ is equivalent to the system of equalities $r=R$, $\varphi=\psi, x_{(3)}=y_{(3)}$.

Denoting

$$
\begin{array}{lll}
\dot{\mathrm{r}}=\tau, & \dot{\varphi}=\alpha, & \dot{x}_{(3)}=u_{(3)} \\
\dot{\mathrm{R}}=0, & \dot{\psi}=\beta, & \dot{\mathrm{y}}_{(3)}=v_{(3)}
\end{array}
$$

then vectors $\left(\tau, \alpha, u_{(3)}\right)$ and $\left(0, \beta, \nu_{(3)}\right)$ on the cylindrical coordinates systems are the parameters of control of the Pursuer and Evader respectively, and the conditions $|u| \leqslant 1$ and $|v| \leqslant 1$ take the forms

$$
\begin{align*}
& \tau^{2}+r^{2} \alpha^{2}+u_{(3)}^{2} \leqslant 1 \tag{9}\\
& R^{2} \beta^{2}+v_{(3)}^{2} \leqslant 1 \tag{10}
\end{align*}
$$

As $x_{(1)}\left(t_{1}\right)=x_{(2)}\left(t_{1}\right)=0$, we consider that $\varphi\left(t_{1}\right)=\psi\left(t_{1}\right)=0$.
Now on the cylindrical coordinate system we define a strategy U of the Pursuer at $t \geqslant t_{1}$

$$
\begin{equation*}
\tau=h\left(r, v_{(3)}\right), \quad \alpha=\beta, \quad u_{(3)}=v_{(3)}+h\left(r, v_{(3)}\right) g_{r}, \tag{11}
\end{equation*}
$$

if $r \leqslant R$, and $\tau=0, \alpha=0, u_{(3)}=0$ if $r>R$, where $g_{r}=d g / d r$ and

$$
\begin{equation*}
h\left(r, v_{(3)}\right)=\frac{-g_{r} v_{(3)}+\sqrt{g_{r}^{2} v_{(3)}^{2}+\left(1+g_{r}^{2}\right)\left(1-v_{(3)}^{2}\right) \frac{R^{2}-r^{2}}{R^{2}}}}{1+g_{r}^{2}} . \tag{12}
\end{equation*}
$$

Here, we note that $\left|v_{(3)}\right| \leqslant 1$ and $r \leqslant R$ so the radicand is nonnegative, and also $h\left(r, v_{(3)}\right)$ is a non-negative solution of the quadratic equation

$$
\begin{equation*}
h^{2}\left(1+g_{r}^{2}\right)+2 h g_{r} v_{(3)}-\left(1-v_{(3)}^{2}\right) \frac{R^{2}-r^{2}}{R^{2}}=0 . \tag{13}
\end{equation*}
$$

In addition, as the function $g_{r}, 0 \leqslant r \leqslant R$, is continuous (see (8)), if the Evader uses an arbitrary control $\left(0, \beta(t), v_{(3)}(t)\right), t \geqslant t_{1}$, then the initial value problem

$$
\begin{align*}
& \dot{\mathrm{r}}=\mathrm{h}\left(\mathrm{r}, v_{(3)}(\mathrm{t})\right), \quad \dot{\varphi}=\beta(\mathrm{t}), \quad \mathrm{r}\left(\mathrm{t}_{1}\right)=\varphi\left(\mathrm{t}_{1}\right)=0, \\
& \dot{x}_{(3)}=v_{(3)}(\mathrm{t})+\mathrm{h}\left(\mathrm{r}, v_{(3)}(\mathrm{t})\right) \mathrm{g}_{\mathrm{r}}, \quad x_{(3)}\left(\mathrm{t}_{1}\right)=\mathrm{a}, \tag{14}\\
& \dot{R}=0, \quad \dot{\psi}=\beta(\mathrm{t}), \quad \dot{y}_{(3)}(\mathrm{t})=v_{(3)}(\mathrm{t}), \quad \varphi\left(\mathrm{t}_{1}\right)=0, \quad y_{(3)}\left(\mathrm{t}_{1}\right)=\mathrm{b},
\end{align*}
$$

has a unique absolutely continuous solution $\left(r(t), \varphi(t), \mathrm{x}_{(3)}(\mathrm{t})\right)$ and $\left(R, \psi(t), y_{(3)}(t)\right), t \geqslant t_{1}$.

First we show that for the strategy (11) the inequality (9) holds. If $r \leqslant R$, then, using the inequality $\beta^{2} \leqslant R^{-2}\left(1-v_{(3)}^{2}\right)$ (see (10)) and equality (13),

$$
\begin{aligned}
& \tau^{2}+r^{2} \alpha^{2}+u_{(3)}^{2} \\
= & h^{2}\left(r, v_{(3)}\right)+r^{2} \beta^{2}+v_{(3)}^{2}+2 v_{(3)} h\left(r, v_{(3)}\right) g_{r}+h^{2}\left(r, v_{(3)}\right) g_{r}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant h^{2}\left(r, v_{(3)}\right)\left(1+g_{r}^{2}\right)+\frac{r^{2}}{R^{2}}\left(1-v_{(3)}^{2}\right)+v_{(3)}^{2}+2 v_{(3)} h\left(r, v_{(3)}\right) g_{r} \\
& =h^{2}\left(r, v_{(3)}\right)\left(1+g_{r}^{2}\right)+2 h\left(r, v_{(3)}\right) g_{r} v_{(3)}-\left(1-v_{(3)}^{2}\right) \frac{R^{2}-r^{2}}{R^{2}}+1 \\
& =1
\end{aligned}
$$

If $r>R$, then $\tau^{2}+r^{2} \alpha^{2}+u_{(3)}^{2}=0$.
We now show that, if the Evader uses an arbitrary control $\left(0, \beta(t), \nu_{(3)}(t)\right)$, $t \geqslant t_{1}$, then for the solution of the initial problem (14) $r(t)=R$, $\alpha(t)=\beta(t)$ and $x_{(3)}(t)=y_{(3)}(t)$ at some $t \geqslant t_{1}$.

Let $t \geqslant t_{1}$ and $r<r_{0}$. Then using (8) we obtain from (13) that (for simplicity we do not write arguments t)

$$
\begin{aligned}
\dot{r} \frac{R}{r_{0}}-\frac{\sqrt{R^{2}-r_{0}^{2}}}{r_{0}} v_{(3)} & =\left(1+g_{r}^{2}\right) h\left(r, v_{(3)}\right)+g_{r} v_{(3)} \\
& =\sqrt{g_{r}^{2} v_{(3)}^{2}+\left(1+g_{r}^{2}\right)\left(1-v_{(3)}^{2}\right) \frac{R^{2}-r^{2}}{R^{2}}} \\
& =\sqrt{\frac{R^{2}-r_{0}^{2}}{r_{0}^{2}} v_{(3)}^{2}+\left(1-v_{(3)}^{2}\right) \frac{R^{2}-r^{2}}{r_{0}^{2}}} \\
& =\sqrt{\frac{R^{2}-r_{0}^{2}}{r_{0}^{2}}+\left(1-v_{(3)}^{2}\right) \frac{r_{0}^{2}-r^{2}}{r_{0}^{2}}} \\
& \geqslant \frac{\sqrt{R^{2}-r_{0}^{2}}}{r_{0}}
\end{aligned}
$$

Consequently,

$$
\dot{r} \geqslant \frac{\sqrt{R^{2}-r_{0}^{2}}}{R} v_{(3)}+\frac{\sqrt{R^{2}-r_{0}^{2}}}{R} .
$$

Integrating the last inequality from t_{1} to t gives

$$
\begin{equation*}
r(t)-r\left(t_{1}\right) \geqslant \frac{\sqrt{R^{2}-r_{0}^{2}}}{R}\left(y_{(3)}(t)-y_{(3)}\left(t_{1}\right)+t-t_{1}\right) \tag{15}
\end{equation*}
$$

As $y_{(3)}(t) \geqslant 0, t \geqslant 0$, and $r\left(t_{1}\right)=0$, then (15) allows us to conclude that $r\left(t_{2}\right)=r_{0}$ at some t_{2} such that

$$
t_{2} \leqslant \frac{R r_{0}}{\sqrt{R^{2}-r_{0}^{2}}}+y_{(3)}\left(t_{1}\right)+t_{1} .
$$

Let $t \geqslant t_{2}$. Note that if $r(t)<R$, then $\dot{r}(t)>0$ and hence $r(t) \geqslant r\left(t_{2}\right)$. As the way shown above, combining (8) with (13) we obtain

$$
\begin{aligned}
\dot{\mathrm{r}} \frac{\mathrm{R}}{\mathrm{r}}-\frac{\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}}{\mathrm{r}} v_{(3)} & =\left(1+\mathrm{g}_{\mathrm{r}}^{2}\right) h\left(\mathrm{r}, v_{(3)}\right)+\mathrm{g}_{\mathrm{r}} v_{(3)} \\
& =\sqrt{\frac{\mathrm{R}^{2}-\mathrm{r}^{2}}{\mathrm{r}^{2}} v_{(3)}^{2}+\left(1-v_{(3)}^{2}\right) \frac{\mathrm{R}^{2}-\mathrm{r}^{2}}{\mathrm{r}^{2}}} \\
& =\frac{\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}}{\mathrm{r}} .
\end{aligned}
$$

Consequently,

$$
\dot{\mathrm{r}}=\frac{\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}}{\mathrm{R}} v_{(3)}+\frac{\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}}{\mathrm{R}} .
$$

Therefore

$$
\frac{\dot{\mathrm{r}}}{\sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}}=\frac{1}{\mathrm{R}}\left(v_{(3)}+1\right) .
$$

We integrate these equality to have

$$
\begin{equation*}
\arcsin \frac{r(t)}{R}-\arcsin \frac{r_{0}}{R}=\frac{1}{R}\left(y_{(3)}(t)-y_{(3)}\left(t_{2}\right)+t-t_{2}\right) . \tag{16}
\end{equation*}
$$

As $y_{(3)}(t) \geqslant 0$ and $\arcsin \frac{r_{0}}{R}>0$, by (16) there exists a number $t_{3}<$ $\frac{\pi R}{2}+t_{2}+y_{(3)}\left(t_{2}\right)$ such that $\arcsin \frac{r\left(t_{3}\right)}{R}=\frac{\pi}{2}$ and so $r\left(t_{3}\right)=R$.

Now consider the third coordinate of point x. From (11) we obtain

$$
x_{(3)}\left(t_{3}\right)=x_{(3)}\left(t_{1}\right)+\int_{t_{1}}^{t_{3}} u_{(3)}(t) d t
$$

$$
\begin{aligned}
& =x_{(3)}\left(t_{1}\right)+\int_{t_{1}}^{t_{3}}\left(v_{(3)}(t)+h\left(r(t), v_{(3)}(t)\right) g_{r}(r(t))\right) d t \\
& =x_{(3)}\left(t_{1}\right)+y_{(3)}\left(t_{3}\right)-y_{(3)}\left(t_{1}\right)+\int_{t_{1}}^{t_{3}} \dot{r}(t) g_{r}(r(t)) d t \\
& =a+y_{(3)}\left(t_{3}\right)-b+g\left(r\left(t_{3}\right)\right)-g\left(r\left(t_{1}\right)\right) .
\end{aligned}
$$

Taking into account the equalities $r\left(t_{1}\right)=0$ and $r\left(t_{3}\right)=R$, and (7), from the last equality

$$
\begin{equation*}
x_{(3)}\left(t_{3}\right)=a+y_{(3)}\left(t_{3}\right)-b+g(R)-g(0)=y_{(3)}\left(t_{3}\right) \tag{17}
\end{equation*}
$$

From the equalities $\varphi\left(\mathrm{t}_{1}\right)=\psi\left(\mathrm{t}_{1}\right)=0$ and $\alpha(\mathrm{t})=\beta(\mathrm{t}), \mathrm{t} \geqslant \mathrm{t}_{1}$, we have $\varphi(t)=\psi(t)=0$ for all $t \geqslant t_{1}$. Then this equality together with (17) implies $x\left(t_{3}\right)=y\left(t_{3}\right)$.

In the final part of the proof of the theorem, we observe that using estimates for t_{2} and t_{3} above and inequality $y_{(3)}(t) \leqslant y_{0(3)}+t, t \geqslant 0$, we obtain the following estimate for the time

$$
T\left(x_{0}, y_{0}\right)=t_{3} \leqslant \frac{R \pi}{2}+\frac{2 R r_{0}}{\sqrt{R^{2}-r_{0}^{2}}}+4\left|x_{0}-z_{0}\right|+3 y_{0(3)}
$$

for which the pursuit can be completed.
The proof of Theorem 7 is complete.

Remark 8. If $y(t) \in\left\{z \in M \mid 0 \leqslant z_{(3)} \leqslant a\right\}, t \geqslant 0$, then pursuit can be completed in the game (1)-(3) from any initial positions.

The General case: $\mathbf{N}=\mathbb{R}^{3}$ Here we study the case (1)-(3), when the Pursuers move throughout the space and the Evader moves on the M. We obtain the following corollary of Theorem 7.

Corollary 9. If $\mathrm{m}=1$, then for any initial position $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right), \mathrm{x}_{0} \neq \mathrm{y}_{0}$, pursuit cannot be completed in the differential game (1)-(3).

Theorem 10. 1. If there exist some indices $\mathfrak{i}, \mathfrak{j} \in\{1,2, \ldots, m\}$ such that $\mathrm{x}_{\mathrm{iO}(3)}<\mathrm{y}_{\mathrm{o}(3)}<\mathrm{x}_{\mathrm{jo}(3)}$, then pursuit can be completed for some time $\mathrm{T}\left(\mathrm{x}_{10}, \mathrm{x}_{20}, \ldots, \mathrm{x}_{\mathrm{m} 0}, \mathrm{y}_{0}\right)$ in the game (1)-(3).
2. If $\mathfrak{i}, \mathfrak{j} \in\{1,2, \ldots, m\}$ do not exist to satisfy $x_{i 0(3)}<y_{0(3)}<x_{j 0(3)}$, then evasion is possible.

Proof:

1. Let there exist indices $\mathfrak{i}, j \in\{1,2, \ldots, m\}$ to satisfy $x_{i 0(3)}<y_{0(3)}<x_{j 0(3)}$. Without loss of generality we assume that $i=1, j=2$ and $y_{0(3)}=0$. We introduce the fictitious Evaders \bar{y}_{1} and \bar{y}_{2}

$$
\bar{y}_{i(j)}(t)=y_{i(j)}(t), \quad j=1,2, \quad \bar{y}_{i(3)}(t)=(-1)^{i}\left|y_{i(3)}(t)\right|, \quad t \geqslant 0
$$

The points \bar{y}_{1} and \bar{y}_{2} move with maximal speed equal to 1 on the half cylinders $M_{-}=\left\{z \in M \mid z_{(3)} \leqslant 0\right\}$ and $M_{+}=\left\{z \in M \mid z_{(3)} \geqslant 0\right\}$ respectively.

Moreover one of the points $\bar{y}_{1}(t)$ and $\bar{y}_{2}(t)$ coincides with $y(t), t \geqslant 0$. So if $\bar{y}_{i}(t)=x_{i}(t)$ for both $i=1$ and $i=2$ at some $t>0$, then $y(t)=x_{i}(t)$ at some $i=1,2$. By Theorem 7 there exist strategies U_{1} and U_{2} of pursuers P_{1} and P_{2}, and number t_{*} such that $\bar{y}_{i}(t)=x_{i}(t)$, $\mathfrak{i}=1,2, \mathrm{t} \geqslant \mathrm{t}_{*}$. Therefore, pursuit can be completed at some time $T\left(x_{0}, y_{0}\right) \leqslant t_{*}$.
2. In this case we assume that $x_{i 0(3)} \leqslant y_{0(3)}, \mathfrak{i}=1,2, \ldots, m$. We show similarly to the beginning part of the proof of Theorem 7 that the Evader using the control $v(t)=(0,0,1), t \geqslant 0$ ensures $x_{i}(t) \neq y(t)$, $t \geqslant 0, i=1,2, \ldots, m$.

The proof of Theorem 10 is complete.

The case when all players move on the surface of the cylinder We consider the differential game (1)-(3) when $N=M$. This means all Pursuers as well as the Evader move on the surface of the cylinder M.

Theorem 11. 1. If there exist indices $\mathfrak{i}, \mathfrak{j} \in\{1,2, \ldots, \mathfrak{m}\}$ with the property that $\mathrm{x}_{\mathrm{iO}(3)}<\mathrm{y}_{0(3)}<\mathrm{x}_{\mathrm{j0}(3)}$ and $\mathrm{m} \geqslant 3$, then pursuit can be completed in the game (1)-(3) for some time $\mathrm{T}\left(\mathrm{x}_{10}, \mathrm{x}_{20}, \ldots, \mathrm{x}_{\mathrm{m} 0}, \mathrm{y}_{0}\right)$.
2. If either $\mathrm{x}_{\mathrm{i} 0(3)} \leqslant \mathrm{y}_{0(3)}$ or $\mathrm{x}_{\mathrm{i0}(3)} \geqslant \mathrm{y}_{0(3)}$ for all $\mathfrak{i} \in\{1,2, \ldots, m\}$, then evasion is possible in the game (1)-(3).

Proof: To prove Theorem 11 we reduce the game (1)-(3) on the cylinder M to the specific game in the plane \mathbb{R}^{2}. Such a reduction is conducted by the multivalue mapping that is inverse to the universal covering $F: \mathbb{R}^{2} \rightarrow M$ which is local isometry (Nikulin and Shafarevich [15]). If $z \in M$, then the aggregate of its preimages $\mathrm{F}^{-1}(z)$ consists of the class of denumerable number of points equivalent to each other $\ldots z^{-2}, z^{-1}, z^{0}, z^{1}, z^{2}, \ldots \in \mathbb{R}^{2}$ such that

$$
\begin{equation*}
z_{(1)}^{j}=z_{(1)}^{0}+2 j \pi R, \quad z_{(2)}^{j}=z_{(2)}^{0}, \quad j= \pm 1, \pm 2, \ldots \tag{18}
\end{equation*}
$$

Let $F^{-1}(y)=\left\{y^{j} \mid j \in Z\right\}, F^{-1}\left(x_{i}\right)=\left\{x_{i}^{j} \mid j \in Z\right\}, i=1,2, \ldots, m$. Then, the equality $x_{i}=y$ is equivalent to $x_{i}^{j}=y^{k}$ for some $\mathfrak{j}, k \in Z$. This property allows us to reduce the formulated game (1)-(3) to the game in the Euclidean plane with many groups of Pursuers and one Evader. Every group consists of countably many pursuers controlled by one parameter. The equations of motions are

$$
\begin{equation*}
\dot{x}_{i}^{j}=u_{i}, \quad x_{i}^{j}\left(t_{0}\right)=x_{i 0}^{j}, \quad i=1,2, \ldots, m, \quad j \in Z, \quad \dot{y}=v, \quad y\left(t_{0}\right)=y_{0} \tag{19}
\end{equation*}
$$

where $x_{i}^{j}, y, u_{i}, v \in \mathbb{R}^{2} ; u_{i}$ and v are control parameters of the group of Pursuers $F\left(x_{i}\right)$ and the Evader y, respectively, and they satisfy the conditions

$$
\begin{equation*}
\left|u_{i}\right| \leqslant 1, \quad i=1,2, \ldots, m, \quad|v| \leqslant 1 \tag{20}
\end{equation*}
$$

Pursuit can be completed in game (18)-(20) if $x_{i}^{j}(t)=y(t)$ for some $\mathfrak{i} \in$ $\{1,2, \ldots, m\}, j \in Z$ and $t>0$.

According to the properties of F mentioned above, pursuit is completed in both games (1)-(3) and (18)-(20) simultaneously. Therefore, we study the game (18)-(20).

Theorem 12. 1. If there exist indices $\mathfrak{i}, \boldsymbol{j} \in\{1,2, \ldots, \mathfrak{m}\}$ with the property that $x_{\mathrm{iO}(2)}^{0}<\mathrm{y}_{\mathrm{O}(2)}<x_{\mathrm{jo}(2)}^{0}$ and $\mathrm{m} \geqslant 3$, then pursuit can be completed in the game (18)-(20) for some time $\mathrm{T}\left(\mathrm{x}_{10}, \mathrm{x}_{20}, \ldots, \mathrm{x}_{\mathrm{m} 0}, \mathrm{y}_{0}\right)$.
2. If either $x_{i 0(2)}^{0} \leqslant y_{0(2)}$ or $x_{i 0(2)}^{0} \geqslant y_{0(2)}$ for all $\mathfrak{i} \in\{1,2, \ldots, m\}$, or $\mathrm{m}<3$, then evasion is possible in the game (18)-(20).

Proof:

1. Let $x_{\mathfrak{i}(2)}^{0}<y_{0(2)}<x_{k 0(2)}^{0}$ for some $\mathfrak{i}, k \in\{1,2, \ldots, \mathfrak{m}\}$ and $\mathfrak{m} \geqslant 3$. We prove that pursuit can be completed in the game (18)-(20). Without loss of generality we assume $x_{10(2)}^{0}<y_{0(2)}<x_{20(2)}^{0}, x_{i 0(1)}^{0}<y_{0(1)}, \mathfrak{i}=$ 1,2 , and $\mathfrak{m}=3$. Then, by (18) there exists $\mathfrak{j} \in Z$ such that $y_{0} \in$ intco $\left\{x_{10}^{0}, x_{20}^{0}, x_{30}^{j}\right\}$, where intco A denotes the interior convex hull of the set A. We consider only motions of the pursuers x_{1}^{0}, x_{2}^{0} and x_{3}^{j}, therefore, for short we write without superscripts, as x_{1}, x_{2} and x_{3}. Now the motions of the Pursuers are described by the equations $\dot{x}_{i}=\mathfrak{u}_{i}$, $\left|u_{i}\right| \leqslant 1, i=1,2,3$.

Now construct a strategy of the Pursuers as strategy of parallel approach (p-strategy)

$$
\begin{equation*}
\mathrm{U}_{\mathrm{i}}(v)=v+\lambda_{\mathrm{i}}(v) e_{\mathrm{i}}, \tag{21}
\end{equation*}
$$

where

$$
e_{i}=\frac{y_{0}-x_{i}}{\left|y_{0}-x_{i}\right|}, \quad \lambda_{i}(v)=-\left\langle v, e_{i}\right\rangle+\sqrt{1-|v|^{2}+\left(\left\langle v, e_{i}\right\rangle\right)^{2}}, \quad i=1,2,3 .
$$

and $\langle\cdot, \cdot\rangle$ is the inner product in \mathbb{R}^{2}.
As $|v| \leqslant 1$ and $\lambda_{i}(v) \geqslant 0, \mathfrak{i}=1,2,3$, from the condition that $y_{0} \in$ intco $\left\{x_{10}, x_{20}, x_{30}\right\}$,

$$
\min _{|v| \leqslant 1} \sum_{i=1}^{3} \lambda_{i}(v)>0
$$

We denote

$$
\mathrm{T}=\left(\sum_{i=1}^{3}\left|x_{i 0}-y_{0}\right|\right)\left(\min _{|v| \leqslant 1} \sum_{i=1}^{3} \lambda_{i}(v)\right)^{-1} .
$$

Let the Evader use an arbitrary control $\boldsymbol{v}(\cdot)$ and the Pursuers uses the p-strategy and $y(\cdot), x_{i}(\cdot), \mathfrak{i}=1,2,3$, his corresponding trajectories. Observe that if the Pursuers use the p-strategy, then the vectors $x_{i}(t)-$ $y(t)$ and e_{i} are parallel at all time (Petrosyan [3, 4]).

We assume the contrary, that is $x_{i}(t) \neq y(t), t \in[0, T]$. Then, for $\mathfrak{i}=1,2,3$ by (21) we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{dt}}\left|x_{i}(\mathrm{t})-\mathrm{y}(\mathrm{t})\right| & =\left\langle\frac{x_{\mathrm{i}}(\mathrm{t})-\mathrm{y}(\mathrm{t})}{\left|x_{\mathrm{i}}(\mathrm{t})-\mathrm{y}(\mathrm{t})\right|}, \mathrm{u}_{\mathrm{i}}(v(\mathrm{t}))-v(\mathrm{t})\right\rangle \\
& =\left\langle\frac{x_{\mathrm{i}}(\mathrm{t})-\mathrm{y}(\mathrm{t})}{\left|x_{i}(\mathrm{t})-\mathrm{y}(\mathrm{t})\right|}, v(\mathrm{t})+\lambda_{i}(v(\mathrm{t})) e_{i}-v(\mathrm{t})\right\rangle \\
& =-\lambda_{i}(v(\mathrm{t}))
\end{aligned}
$$

Hence,

$$
\sum_{i=1}^{3} \frac{d}{d t}\left|x_{i}(t)-y(t)\right|=-\sum_{i=1}^{3} \lambda_{i}(v(t)) \leqslant-\min _{|v| \leqslant 1} \sum_{i=1}^{3} \lambda_{i}(v)
$$

Integrating the last inequality from 0 to T , we obtain

$$
0<\sum_{i=1}^{3}\left|x_{i}(t)-y(t)\right| \leqslant \sum_{i=1}^{3}\left|x_{i 0}-y_{0}\right|-T \min _{|v| \leqslant 1} \sum_{i=1}^{3} \lambda_{i}(v)=0
$$

which contradicts our assumption. Thus pursuit can be completed for the time T .
2. Let $x_{i 0(2)}^{0}<y_{0(2)}$ for all $i=1,2, \ldots, m$. Then as in the proof of Theorem 7, we prove that the evasion is possible if the Evader uses the control $v(t)=(0,1), t \geqslant 0$.

Now we consider the case $\mathrm{m}<3$. Let $\mathrm{m}=2$ and $x_{10(2)}^{0}<y_{0(2)}<x_{20(2)}^{0}$ (otherwise the above arguments imply that evasion is possible). We prove that for any initial position, evasion is possible.

We construct the strategy of the Evader by conditions

$$
\begin{equation*}
\left\langle V, x_{1}^{j_{1}}-x_{2}^{j_{2}}\right\rangle=0, \quad\left\langle V, x_{i}^{j_{i}}-y\right\rangle \leqslant 0, \quad i=1,2, \tag{22}
\end{equation*}
$$

where $x_{i}^{j_{i}} \in\left\{x_{i}^{j} \mid j \in Z\right\}=F^{-1}\left(x_{i}\right)$ and

$$
\begin{equation*}
\min _{j \in Z}\left|y-x_{i}^{j}\right|=\left|y-x_{i}^{j_{i}}\right|, \quad i=1,2 . \tag{23}
\end{equation*}
$$

By (18) and (23),

$$
\begin{equation*}
\left|y-x_{i}^{j}\right| \geqslant \pi R, \quad j \neq j_{i}, \tag{24}
\end{equation*}
$$

where $\mathfrak{j}_{\mathfrak{i}}, \mathfrak{i}=1,2$, satisfy (23).
Let $\Delta=\left\{0=t_{0}, t_{1}, t_{2}, \ldots\right\}$ be a partition of the interval $[0, \infty)$ with $\mathrm{t}_{\mathrm{i}}=\mathfrak{i} \pi \mathrm{R} / 4$. We consider the trajectory $\mathrm{y}(\cdot)$ generated by the strategy V and the partition Δ. We assume that $y(t) \neq x_{i}^{j}(t)$ for all $i=1,2, j \in Z$, and $t \in\left[0, t_{k}\right]$, where k is some non-negative integer and then prove that $y(t) \neq x_{i}^{j}(t)$ for all $i=1,2, j \in Z$, and $t \in\left[t_{k}, t_{k+1}\right]$. Without loss of generality we consider that $x_{i}^{j_{i}}=x_{i}^{0}$, that is, $\mathfrak{j}_{i}=0, \mathfrak{i}=1,2$. Then by (22) we have

$$
\begin{aligned}
\left|y(t)-x_{i}^{0}\left(t_{k}\right)\right| & =\left|y\left(t_{k}\right)-x\left(t_{k}\right)+\left(t-t_{k}\right) V\right|>\left|\left(t-t_{k}\right) V\right| \\
& =t-t_{k} \geqslant\left|\int_{t_{k}}^{t} u_{i}(s) d s\right|
\end{aligned}
$$

$$
=\left|x_{\mathfrak{i}}^{0}(\mathrm{t})-x_{\mathfrak{i}}^{0}\left(\mathrm{t}_{\mathrm{k}}\right)\right|, \quad \mathrm{t}_{\mathrm{k}} \leqslant \mathrm{t} \leqslant \mathrm{t}_{\mathrm{k}+1}, \quad \mathfrak{i}=1,2
$$

Consequently, $y(t) \neq x_{i}^{0}(t), i=1,2, t \in\left[t_{k}, t_{k+1}\right]$. For $\mathfrak{j} \neq 0$ by using (24) and $t_{i}=i \pi R / 4$ we obtain

$$
\begin{aligned}
\left|y(t)-x_{i}^{j}(t)\right| & =\left|y\left(t_{k}\right)-x_{i}^{j}\left(t_{k}\right)+\left(t-t_{k}\right) V-\int_{t_{k}}^{t} u_{i}(s) d s\right| \\
& \geqslant\left|y\left(t_{k}\right)-x_{i}^{j}\left(t_{k}\right)\right|-\left|\left(t-t_{k}\right) V\right|-\left|\int_{t_{k}}^{t} u_{i}(s) d s\right| \\
& \geqslant \pi R-\left(t-t_{k}\right)-\left(t-t_{k}\right) \\
& \geqslant \frac{\pi R}{2}, \quad t \in\left[t_{k}, t_{k+1}\right], \quad i=1,2
\end{aligned}
$$

This implies that $y(t) \neq x_{i}^{j}(t), t \in\left[t_{k}, t_{k+1}\right], j \in Z, i=1,2$. Therefore, by induction the inequalities $y(t) \neq x_{i}^{j}(t)$ hold for any $t \in[0, \infty), j \in Z$, and $i=1,2$.

The proof of Theorem 12 is complete.

Acknowledgements: We thank Prof. Dr. Abdulla Azamov, Institute of Mathematics and Information Technology of Academy Science of Republic Uzbekistan and Assoc. Prof. Dr. Gafurjan Ibragimov, Department of Mathematics, Universiti Putra Malaysia, for helpful discussions.

References

[1] Isaacs, R. Differential Games. A Mathematical Theory with Applications to Warfare and Pursuit, Control, and Optimization. New York: Wiley, 1963. E2
[2] Petrov, N. N. A problem of group pursuit with phase constraints. J. Appl. Math. Mech. 1988, 52, No 6, 1030-1033. E2
[3] Petrosyan, L. A. Survival differential game with many participants. Dokl. Akad. Nauk USSR. 1965, 161, No 2, 285-287. E2, E16
[4] Petrosyan, L. S. Differentsial'nye igry presledovaniya (Pursuit Differential Games). Leningrad (SPb): Leningr.State Univ(SPbSU), 1977. E2, E16
[5] Pshennichnyi, B. N. Simple pursuit of several targets. Kibernetika. 1976, No 3, 145-146. E2
[6] Chernous'ko, F. L. A problem of evasion of several pursuers. J. Appl. Maths Mechs.1976, 40, No 1, 14-24. E2
[7] Ivanov R. P. Simple pursuit-evasion on a compact. Dokl. Akad. Nauk SSSR. 1980, 254, No 6, 1318-1321. E2
[8] Melikyan, A. A. and Ovakimyan, N. V. Singular trajectories in the problem of simple pursuit on a manifold. J. Appl. Math. Mech. 1991, 55, No 1, 42-48. E2
[9] Melikyan, A. A. and Ovakimyan, N. V. Differential Games of Simple Pursuit and Approach on Manifolds. Institute of Mechanics, National Academy of Sciences of Armenia. Yerevan. Preprint, 1993. E2
[10] Kuchkarov, A. Sh. The problem of optimal approach in locally euclidean spaces. Automation and Remote Control. 2007, 68, No 6, 974-978. E2
[11] Kuchkarov, A. Sh. A simple pursuit-evasion problem on a ball of a Riemannian manifold. Mathematical Notes. 2009, 85, No 2, 190-197. E2
[12] Azamov, A. On a problem of escape along a prescribed curve. J. Appl. Math. Mech. 1982, 46, No 4, 553-555. E2
[13] Kuchkarov, A. Sh. and Rikhsiev, B. B. on the solution of a pursuit problem with phase constraints. Automation and Remote Control. 2001, 62, No 8, 1259-1262. E2
[14] Ibragimov G. I. A game problem on a closed convex set. Siberian advances in mathematics., 2002, 12, No 3, 16-31. E2
[15] Nikulin, V. V. and Shafarevich, I. R. Geometriya i Gruppy (Geometric and Groups). Moscow: Nauka, 1983. E14

Author addresses

1. A. Sh. Kuchkarov, Institute of Mathematics and Information Technology of Academy Science of Republic Uzbekistan and INSPEM, Universiti Putra Malaysia, Serdang, Malaysia.
2. M. H. Risman, Dept. Maths, Universiti Putra Malaysia, Serdang, Malaysia. mailto:risman@math.upm.edu.my
3. A. H. Malik, INSPEM \& Dept. Maths, Universiti Putra Malaysia, Serdang, Malaysia.
