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Abstract

Power system performance is affected by dynamic characteristics
of hydraulic governor-turbines during and following any disturbance,
such as occurrence of a fault, loss of a transmission line or a rapid
change of load. Accurate modelling of hydraulic governor-turbines is
essential to characterise and diagnose the system response during an
emergency. In this article, both detailed and simplified hydraulic sys-
tems governed by proportional-integral-derivative and proportional-
integral controllers are modelled. This article examines their transient
responses to disturbances through simulation in Matlab/Simulink.
The article also investigates the dynamic performance of an isolated
hydraulic system through evaluating stability margins, eigenvalues,
root loci and frequency deviation time responses of the system. The
results obtained provide an insight into the stability of the power sys-
tem governed by different governor settings.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/333
for this article, c© Austral. Mathematical Soc. 2008. Published August 13, 2008. ISSN
1446-8735
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1 Introduction

Since 1973, the demand on modelling requirements for power system com-
ponents has become more onerous due to the increasing complexity of power
system networks [4]. Power system components such as the governor, tur-
bine and generator need to be represented by a detailed model. Classical
representations of a hydraulic system, which assume an ideal lossless tur-
bine, are limited to small perturbations around an initial operating point.
They depict the actual characteristics at only very low frequencies. For large
signal stability studies, the classical model does not capture the dynamic
behaviour accurately and leads to erroneous responses. Moreover, conven-
tional governor tuning is performed based on the classical model, hence the
optimal and stable governor settings obtained by the classical model differ
substantially from the settings obtained from comprehensive models. It is
thus vital to represent the hydraulic model in detail in order to determine
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Figure 1: Functional block diagram of hydraulic governor-turbine system
interconnected with a power system network.

the practical dynamic responses as accurately as possible for a wide variety
of system studies.

This article presents a detailed mathematical representation of the hy-
draulic turbine-penstock. The dynamic performance of the hydraulic system
is studied using time domain and frequency domain methods.

2 Mathematical representations of hydraulic

system

In this section, a mathematical representation of a hydraulic system, includ-
ing both turbine-penstock and the governing system, is introduced. Figure 1
shows a block diagram of the hydraulic governor-turbine system connected
to a power system network. The primary source for the electrical power
provided by utilities is the kinetic energy of water which is converted into
mechanical energy by the prime movers. The electrical energy to be sup-
plied to the end users is then transformed from mechanical energy by the
synchronous generators. The speed governing system adjusts the generator
speed based on the input signals of the deviations of both system frequency
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and interchanged power with respect to the reference settings. This is to
ensure that the generator operates at or near nominal speed at all times.

2.1 Hydraulic turbine model

The dynamic performance of a hydraulic system is affected by the turbine-
penstock characteristics which are determined by water inertia, water com-
pressibility, and pipe wall elasticity in the penstock. The effects of each com-
ponent need to be modelled carefully to study their impact on the system
dynamic performance. For example, water inertia causes changes in turbine
flow to lag behind changes in turbine gate opening, and the travelling waves
of pressure and flow involving a compressible fluid in an elastic pipe lead to
the water hammer phenomenon.

2.1.1 Realistic nonlinear turbine-penstock model

An ieee working group [4] and Kundur [5] discussed the model for a detailed
representation of hydraulic dynamics in the penstock. The hydraulic unit
characteristic of a single penstock is [5]

(dq/dt) = (h0 − h− hl)agravityA/L , (1)

q̄ = Ḡ
√
h̄ . (2)

The terms for the physical design of the plant describe the water starting
time constant for rated conditions when equation (1) is normalised using the
per unit system [2]

dq̄/dt =
(
1− h̄− h̄l

)
/Tw rated, (3)

where Tw rated = Lqbase/(agravityAhbase).
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Table 1: Nomenclature
q = turbine flow Ki = integral gain = 0.7
G = ideal gate opening based on the
change from the no load to full load
being equal to 1 per unit [% or pu]

Kd = derivative gain = 0.5

g = movement of wicket gate or the
amount of gate opening/closing [%
or pu]

TA = pilot servomotor time con-
stant [sec]

h = hydraulic head at gate TC = gate servo gain [sec]
hl = head losses due to friction in
the conduit

TD = gate servomotor time con-
stant [sec]

h0 = initial steady-state head q̄noload = per unit no load water flow
Pm = mechanical power qbase = base value of water flow
Pe = electrical power hbase = base value of hydraulic head
agravity = gravity acceleration At = turbine gain
L = conduit length ḡFullLoad = per-unit full-load gate

opening
A = penstock cross section area ḡNoLoad = per-unit no-load gate

opening
Tm = mechanical starting time [sec] ¯denotes normalised value [pu]
Tw = Water starting time constant
[sec]

ˆdenotes Laplace notation

Tw rated = water starting time con-
stant

Laplace Transform variable is de-
noted ‘s’

t = time [sec] a11 = ∂q/∂h
ωref = reference/nominal speed a12 = ∂q/∂ω
ω = shaft speed a13 = ∂q/∂g
D = Self-regulation of load a21 = ∂Pm/∂h
σ = permanent speed droop = 0.04 a22 = ∂Pm/∂ω
Kp = proportional gain = 3.0 a23 = ∂Pm/∂g
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Figure 2: Hydraulic turbine block diagram assuming an inelastic water
column.

The turbine representation is based on steady state measurements related
to output power and water flow [2]

P̄m = Ath̄ (q̄ − q̄noload) , (4)

where turbine gain At is a proportionality factor and is assumed to be con-
stant, that is At = 1/ (ḡFullLoad − ḡNoLoad).

In practice, it is common for governor-turbine manufacturers to indicate
the speed ring position by arranging the gate position sensing device to give
readings as a fraction of the gate stroke from the fully closed to the fully
opened setting. In reality, the gates will not be fully closed at no load and
they may not be completely opened at rated load. Hence, Undrill and Wood-
ward [7] assumed that the turbine torque at rated speed and rated head is
linearly related to the gate position sensor reading.

The combination of equations (2), (3) and (4) yields the general dy-
namic characteristics of a hydraulic turbine with a penstock, unrestricted
head and tail race as shown in the block diagram in Figure 2. A supple-
mentary term, GD∆ω, is subtracted from the output of the turbine model
to represent speed deviation damping due to gate opening [4]. The speed
deviation ∆ω is the deviation of the actual turbine-generator speed from the
nominal speed.
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2.1.2 Linearised turbine-penstock models

The dynamic characteristics of the power system components are normally
represented mathematically by differential equations. The technique of lin-
ear system analysis is employed to investigate the dynamic behaviour of the
power system assuming small signals. The Laplace transform is used herein to
solve the linear differential equations; this method replaces the more compli-
cated differential equations with relatively easily solved algebraic equations.

For a small variation about an equilibrium condition, the turbine is rep-
resented by the linearised equations, normalised based on initial steady state
values [4, 5, 6]

∆q̄ = a11∆h̄+ a12∆ω̄ + a13∆ḡ , (5)

∆P̄m = a21∆h̄+ a22∆ω̄ + a23∆ḡ . (6)

Both the water flow and the mechanical power of the turbine are functions
of head h, machine speed ω and gate opening g. The partial derivatives
represented by coefficients a1i and a2i (i = 1, 2, 3) is obtained from Thorne
and Hill [6] for three different operating points.

In an interconnected power system, the hydraulic units are synchronised
to the system network. As a result, speed variations ∆ω are fairly small and
usually neglected.

Consequently, the mechanical power output of the turbine is obtained,
with the inclusion of water inertia effect [6]

∆ ˆ̄Pm/∆ˆ̄g = a23

{
[(a23a11 − a21a13) /a23] T̂ws+ 1

}
/
(
a11T̂ws+ 1

)
. (7)

Equation (7) is a conventional expression for a classical non-ideal hydraulic
turbine. The superhat ˆ denotes the notation of the Laplace transform pa-
rameters. Typical values of the coefficients for an ideal lossless turbine are
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a11 = 0.5 , a13 = 1.0 , a21 = 1.5 and a23 = 1.0 . The ideal lossless turbine
used in system stability studies is [6]

∆ ˆ̄Pm/∆ˆ̄g = (−T̂ws+ 1)/(0.5T̂ws+ 1). (8)

The water starting time constant used for the linearised turbine-penstock
model corresponds to the hydro unit’s operating condition, that is, Tw is
calculated with the current operating flow and head. For the nonlinear model
described in Subsection 2.1.1, Tw rated is obtained at rated conditions using
rated head and rated flow as the bases. The application of the nonlinear
model for simulation analysis will be beneficial as it allows one data base to
denote the dynamic models for the system independent of dispatch. This is
true if there are no common flow paths for more than one unit at the plant;
for example, a shared penstock. This is not the case for a linearised model
where different values of Tw are required as the dispatch of the hydro units
is varied in the initial state load flows [2].

2.2 Hydraulic governor model

The fundamental function of a governor is to control the speed and/or load
through the feedback signal of the speed error and/or power variation to
control the gate position, which regulates the water flow through the pen-
stock [5]. This is to ensure the active power balance in the system as well as
to maintain grid frequency within nominal value under electrical load varia-
tions.

An electrohydraulic governor provided with proportional integral deriva-
tive (pid) controllers is shown in Figure 3. The speed deviation is processed
by the pid terms into a command signal to a series of hydraulic valves and
servos to produce a change in throttle valve or gate position of the prime
mover. The time constants TA, TC and TD of these hydraulic actuators are
established by the pressure/flow characteristics of the gate and its servos.
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Figure 3: pid governor system.

However, the servomotor time constants have been neglected in deriving the
governor response as their effects are substantial only if their poles occur
before or near crossover frequency [4]. For security reasons, the speed of the
gate stroke is restricted; it is represented by a simple rate-limit, which is
sufficient for analysis. The gate opening is limited before it reaches its physi-
cal limits. Speed sensing, permanent droop, other measuring and computing
operations are performed electrically. The electrical components provide bet-
ter flexibility and enhanced execution with regard to dead bands and time
lags [5]. The proportional term generates an instantaneous response to a
speed error input, and it has a significant impact on the system stability.
The integral term performs together with the proportional term to deter-
mine the stability. Its ability to reduce the speed error to a zero value is
known as ‘reset’. The derivative term allows the expansion of the stability
limits with larger values of proportional and integral gains whilst retaining
the system stability [3].

The occurrence of a power system fault, which is reflected in the frequency
deviation (ωref − ω), results in compensation operated by the pid governor.
The correction executed depends on the droop, the dynamic settings and the
characteristics of the pid governor. The permanent droop determines the
speed regulation under steady state operating conditions. It is described as
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the percentage or per unit speed drop needed to drive the gate from minimum
to maximum opening without varying the speed reference [4]. Given the
turbine characteristics, pid gains act to give stable gate position control and
follow command signals in increasing or decreasing power generation.

The pid governor is [5]

ĝ/ (ω̂ref − ω̂) =
(
s2K̂d + sK̂p + K̂i

)/[
s2σ̂K̂d + s

(
σ̂K̂p + 1

)
+ σ̂K̂i

]
. (9)

With derivative gain excluded, it yields the pi governor

ĝ/ (ω̂ref − ω̂) =
(
sK̂p + K̂i

)/[
s
(
σ̂K̂p + 1

)
+ σ̂K̂i

]
. (10)

Small signal analysis is considered in the studies. The perturbations applied
to the system are not significant such that neither the limits of the gate
position nor the maximum gate opening/closing rates are reached. Thus, the
windup effects have not been accounted for in the equations.

2.3 Combined electrical system

The differential equation of speed ω is derived and solved utilising water
acceleration of the turbine and governor response described in Subsections 2.1
and 2.2 respectively, together with the swing equation depicting the machine
acceleration dω/dt = (Pm − Pe −Dω)/Tm [5]. This equation determines the
network system stability.

The differential equation is transformed into Laplace space as

0.5
σ̂K̂d

T̂w

s4ω̂ +

(
σ̂K̂d

T̂w

+ 0.5
K̂dD̂σ̂

T̂m

+ 0.5 + 0.5K̂pσ̂ −
K̂d

T̂m

)
s3ω̂(

D̂σ̂K̂d

T̂m

+ 1 + K̂pσ̂ + 0.5
D̂T̂w

T̂m

+ 0.5
K̂pT̂wD̂σ̂

T̂m

+ 0.5
K̂pK̂iσ̂T̂m

T̂w

+
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+
K̂d

T̂m

− K̂pT̂w

T̂m

)
s2ω̂ +

(
D̂T̂w

T̂m

+
K̂pT̂wD̂σ̂

T̂m

+
K̂pK̂iσ̂T̂m

T̂w

+ 0.5K̂pK̂iD̂σ̂

+
K̂pT̂w

T̂m

− K̂pK̂i

)
sω̂ +

(
K̂pK̂i + K̂pK̂iD̂σ̂

)
ω̂ = 0 . (11)

This has the fourth order polynomial form a0s
4 +a1s

3 +a2s
2 +a3s

1 +a4 = 0,
and it yields the stability limit if (a1a2 − a0a3)a3 − a12a4 = 0 by the Routh–
Hurwitz criterion. In control theory, the system is stable when all roots of
the characteristic equation lie in the left half of the s-plane. Moreover, to
ensure stability, all the coefficients of the characteristic equation need to have
the same sign and must be nonzero [1].

3 Simulation results

Isolated operation of the hydraulic system is used for the case studies. A hy-
draulic turbine with water starting time, Tw = 2 sec, and mechanical starting
time, Tm = 8 sec, is considered. A purely resistive electrical load with im-
mediate voltage regulation is assumed with self-regulation D = 0 . This is a
worse case scenario as the power is independent of the speed and the inverse
relationship between torque and speed makes it adverse for system stability.
Matlab/Simulink is used as a software tool for simulation studies.

The unit impulse involved in the hydraulic turbine-governor transfer func-
tions has the value of infinity at t = 0 and zero for all other times. However,
this does not appear in physical systems. In reality there is a very high
finite value for a short period of time. Hydro turbines typically have ini-
tial inverse response characteristics of power to gate changes. They require
provision of transient droop features in the speed controls for stable control
operation; that is, the governor should exhibit high regulation (low gain) for
rapid changes in the frequency and vice versa [4]. Thus the impulse func-
tions involved in the turbine-governor equations are the natural response of
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Figure 4: Stability limit of the hydraulic governor system.

the hydraulic system and the existing system transients. Practical systems
normally operate under steady state condition with an operating point. If
any fault occurs, the system will be perturbed from this operating point.

From a simulation perspective, the system will be initialised to avoid any
unexpected response or instability due to the impulse functions as well as to
restore the system operating conditions to a steady state level. These initial
transients last for a short time only and are usually ignored as they do not
represent the true behaviour of the system. Also, any inherently unstable
responses and transients in the dynamic systems will be damped out by the
amortisseurs winding of the machine rotors and the interconnected system.
The huge inertia of the machine aids in the damping process as well.

Figure 4 shows the stability limit curves of the hydraulic system where a
classical turbine model is utilised. For governor settings bounded within the
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Figure 5: Frequency response loci of hydraulic turbine-penstock models.

stability limit curve, a stable system will result. Governor settings on the
stability limit result in an undamped oscillatory response. The inclusion of
the derivative gain Kd extends the stability boundary. With Kd = 0.5 , the
governor settings with Kp = 3.0 and Ki = 0.7 result in a stable response.
Instability results when the derivative gain is neglected.

Figure 5 shows the frequency response loci of different linearised hydraulic
turbine-penstock models. The response for the classical model differs signif-
icantly from the linearised models operating at full load and no load for all
frequency ranges. The linearised models agree well at fairly low frequencies.
At a frequency of 0.3 rad/sec, the linearised models operating at no load and
full load share similar characteristics. However, their characteristics differ
substantially with that of the classical model as the water column effect is
not considered in the classical model.

Figure 6 shows the eigenvalues for the closed loop hydraulic governor-
turbine systems. The oscillatory mode represented by a pair of complex
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conjugate eigenvalues is of primary interest, as the real part of the eigen-
values is the amount of the associated damping, whilst the imaginary part
measures the frequency of oscillations. The classical hydraulic system with
Kd neglected is unstable as a pair of the eigenvalues crosses over the stability
limit. However, with the consideration of a detailed turbine model, both
systems (with or without Kd) become stable. These results are verified by
the frequency deviation time responses as shown in Figures 7 and 8, when a
small amount of load is applied at time, t = 2 sec. An oscillatory but stable
response for the classical turbine governed by the pid controller is observed
in Figure 7. With a detailed turbine model, the responses reach steady state
faster with less oscillation, and the deviations resulting are smaller as well.
This comprehensive model incorporates the general dynamic characteristics
of a hydraulic turbine with due consideration of the penstock, unrestricted
head and tail race effects, and is suitable for most power system analysis.
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4 Conclusions

The time domain analyses of the governing system subject to load distur-
bances are verified by frequency response methods as well as with the stability
limit curves of the hydraulic system. The detailed modelling of power sys-
tem components is vital to capture essential system dynamic behaviour. The
pid and pi governors perform better when applied to a more realistic model.
Furthermore, the inclusion of the derivative action in the governor aids in
extending the system stability limit.
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