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Comparison of weed spread models
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Abstract

Numerous models of weed spread and growth exist in ecology. We
compare four common models: reaction diffusion, integro-difference,
‘scatter’ model, and an ‘occupation’ model. We discuss their similar-
ities, strengths and limitations. After verifying the equivalence of the
integro-difference model, with a Gaussian kernel, against the reaction
diffusion model, we show how to equate parameters of the different
models. We also investigate the effect of the occupation model pa-
rameters on spread behaviour.
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1 Introduction

Weed spread is of financial concern as introduced plants invade agricultural
land, decreasing productivity, and environmental concern as they modify
the natural ecosystems in Australia [3]. Hence predicting weed spread facili-
tates proper management and control. Numerous models exist for the spatial
growth and spread of weeds. Although there have been several reviews of
weed spread [1, 4, 7, 8, 9, 10, 11, 15, 16], to our knowledge there have been no
direct numerical comparisons of reaction diffusion, integro-difference, ‘scat-
ter’ and ‘occupation’ models. Here we discuss which parameters are equiv-
alent for the reaction diffusion, integro-difference, and ‘occupation’ models,
and highlight the differences between the ‘scatter’ and integro-difference mod-
els. We verify that the integro-difference equation, with a Gaussian distribu-
tion, is equivalent to the reaction diffusion model, as a test of the accuracy
of our numerical implementations. We also investigate the effect of changing
the occupation model parameters on the spread behaviour and discuss the
similarities, strengths and limitations of the models.

Fisher [6] did some of the earliest work on the reaction diffusion model,
including calculating the asymptotic wave speed. Skellam [18] was one of the
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first to use this Fisher model for an invasive ecological scenario. The general
form of the reaction diffusion model [10] is

∂N

∂t
= ∇ · (D∇N) + γf(N) , (1)

where N(x, y, t) is the density function of plants at position (x, y) at time t,
D(x, y, t) is the diffusivity, γ(x, y, t) is the intrinsic growth rate and f(N) is
the growth rate function and takes many forms [9, 10, 14, 15, 16], and usu-
ally 0 ≤ f(N) ≤ 1 .

The integro-difference equation was first used to model populations in
genetics [11, 13, 19, 20] where Weinberger [19, 20] conducted a comprehensive
wave speed analysis. This model is now commonly used to investigate plant
spread rates [9, 11]. The ‘scatter’ model uses the integro-difference equation
with a stochastic finite dispersal kernel.

Various cellular automata simulations have been developed as a means
of modelling plant spread, as summarised by Higgins and Richardson [8].
We concentrate on the work by Rees and Paynter [17] who developed an
‘occupation’ model for the spread of Scotch broom, which is an invasive
shrub-like plant. The distinguishing feature of this work is the inclusion of a
probability of disturbance.

In comparing these models we evaluate their consistency over three dif-
ferent criteria: the total population; the position of the travelling weed front
down the centreline of the region as functions of time; and the speed of
the weed front as a function of the growth term. Section 2 discusses the
attributes, advantages and limitations of each model, emphasising impor-
tant similarities. Section 3 matches the parameters of the models, using our
simulations of typical weed spread scenarios to verify the equivalence of the
integro-difference and reaction diffusion models and explore the effect of the
probability of disturbance on the occupation model.
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2 Models

In all simulations we assume a homogeneous region, which may underestimate
the speed of the weed front [7], with constant parameters, and one weed
species with no stage structure; that is, the seed, seedling and age structure
of the plant are not considered.

2.1 Reaction diffusion

The reaction diffusion model we use combines growth and diffusion [1, 8, 10]

∂N

∂t
= D

(
∂2N

∂x2
+
∂2N

∂y2

)
+ γf(N) , (2)

where N = N(x, y, t) is the density of plants [branches/m2] at position
(x, y) [m] and time t [month], D is the diffusivity [m2/month] and γ is
the intrinsic growth rate [month−1]. The units of ‘branches’ could easily
be changed to ‘individuals’. The growth rate function is chosen to include a
common logistic expression [8]

f(N) = N

(
1− N

C

)
, (3)

where C is the carrying capacity.

The diffusive term in equation (2) is equivalent to assuming a normally
distributed (Gaussian) dispersal pattern [7, 8, 15]; however, experimental
results indicate that dispersal patterns are usually leptokurtic [8, 14, 16].
That is, they have a long tail distribution, with plants spreading further
than a Gaussian distribution; hence limiting the application of this model to
plant spread. The asymptotic wave speed c [7] in one spatial dimension, is

c =
√

4γD , (4)
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and in two dimensions, the radial speed is

c =
√

4πγD . (5)

2.2 Integro-difference

The integro-difference model is a combination of growth followed by dispersal
in a discrete time cycle, where the dispersal pattern is governed by any
kernel [10, 14, 15]. The model considers each position in space and determines
what disperses to that position from every other position in the region. The
integro-difference equation has the general form in one spatial dimension
(with obvious extension to two dimensions) of

N(x, t+ τ) =

∫
z

K(x, z)f(N(z, t)) dz , (6)

where N(x, t) is the density of plants, τ is the discrete time step, K(x, z) is
the dispersal kernel from spatial point z to x, and f(N(z, t)) has many
forms [10, 14, 15]. We use equation (3) for consistency. Any dispersal kernel
is possible, including combinations of kernels [15] which mimics the different
spread mechanisms of plants. For example, seeds drop around the plant in
a Gaussian distribution, but are spread leptokurtically by birds to distant
locations. This model is equivalent to the reaction diffusion model when
the dispersal kernel has a Gaussian distribution [15], which is depicted in
Figure 1(a):

K(x, z) =
1√

4πDτ
exp

(
−(x− z)2

4πDτ

)
, (7)

where D is directly equivalent to the diffusivity term of the reaction diffusion
model, equation (2) [2, 12]. The integro-difference model with non-Gaussian
dispersal kernels has been shown [2] to be equivalent to fractional reaction
diffusion equations, which are not discussed here.
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Figure 1: Gaussian dispersal kernels K(x) for: (a) Integro-difference model;
(b) Scatter model.

We make the common assumption that K(x, z) ≡ K(x − z) implying
that the region is spatially homogeneous, as the dispersal is only a function
of the distance between two sites [14, 15]. Kot et al. [9] show that when the
dispersal kernel is given by equation (7), the wave speed for this model is
given by equation (4). That is, with these assumptions the asymptotic wave
speeds for the reaction diffusion and integro-difference models are identical.
Asymptotic wave speeds for general growth rate functions, f(N), have also
been derived [9] but are not discussed here.

2.3 Scatter model

The scatter model we use is similar to the integro-difference model, equa-
tion (6), but it uses a rule based finite stochastic dispersal kernel as per
cellular automata models. The difference between the kernels is depicted in
Figure 1. That is, we assume plants arrive in finite groups as is common in
ecology, for example birds will usually carry large quantities of seeds to ap-
proximately the same distant location. Normally, to model realistic spread,
we would use a kernel with long distance dispersal events, however for this
comparison we use a finite Gaussian distribution, shown in Figure 1(b), to
better compare models. The result of the difference in the dispersal kernels
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is a more realistic, ‘clumpy’ spread pattern [12].

2.4 Occupation model

An occupation model is a cellular automata model. We concentrate on a
particular example developed by Rees and Paynter [17] to model the spread of
Scotch broom. A series of transition rules are used at each site to control the
population density over time [8]. The model assumes a small enough spatial
discretisation that a single plant occupies an entire site, hence making the
plant density N = 0 or 1. The occupation model has numerous parameters:
plants older than Amin disperse F seeds according to some kernel, assumed to
be nearest neighbour, where fh is the probability a seed remains in the parent
site. As per the model by Rees and Paynter [17], the lattice is rectangloid and
the nearest neighbours are the surrounding eight cells. The decay of seeds
over time is controlled by the probability d. The probability of a new plant
is governed by two parameters: g, the probability a seed becomes a seedling;
and s, the probability a seedling survives to the end of its first year. New
plants can only grow if a site is disturbed, which occurs with probability pdist.
This mimics ecological cases where weeds cannot establish at sites already
occupied by native species. When a plant reaches Amax years, it dies and the
site is re-colonised with probability pso.

The occupation model is easy to implement numerically and is appropri-
ate for situations where “a single plant can influence invasion patterns” [8].
Since there is a single plant per site, it is best suited for small spatial scales [8],
as large areas would be too computationally intensive. Modifying the as-
sumption to include multiple plants per site would overcome this limitation.
However, this would fundamentally change the model and is not examined
here, but is the subject of further work.
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Figure 2: Wave speed of the occupation model as a function of the proba-
bility of disturbance, pdist, with 95% confidence bounds (dashed lines).

3 Simulation results

Each of the models used a 112.5 m × 112.5 m sized homogeneous region in
the (x, y) directions, discretised to a 75× 75 grid. Initially a strip of plants
with a density of 10 branches/m2 were placed in the top 10% of the region.
The side boundaries were wrapped to simulate an infinite region, so plants
disappearing off the left of the region appear on the right and vice versa, as
is common in the ecological literature [17]. The top boundary was insulated
(∂N/∂y = 0) to prevent any loss of plants. No boundary condition was set
at the bottom of the region as simulations were terminated before the weed
front reached here.
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An important aspect of model comparison is matching the parameters.
Therefore, since the reaction diffusion model is limited to a Gaussian dispersal
kernel, the integro-difference and scatter models used only this distribution.
In order to approximate the nearest neighbour distribution of the occupation
model, the diffusivity, D, was set to the length of the grid in the y direction
squared divided by the size of the time step: 2.25 m2/month. To match the
growth term of the reaction diffusion and integro-difference models with the
occupation model parameters we approximated the probabilities controlling
the recruitment of a new plant so that γ ≈ g × s , as detailed in section 2.4.

The inclusion of the probability of disturbance in the occupation model
provides a significant difference to the other models. For this reason we
initially set pdist = 0.8 for Figures 3 to 5, which means that a recruited
plant is able to grow in most grids at every time step. For completeness,
we calculated the speed of the weed front for the occupation model as a
function of the probability of disturbance, as shown in Figure 2. The results
depicted here were averaged over ten repetitions, with a standard deviation
of 0.065 m/month.

For Figures 2, 3 and 4, the growth term γ = 0.1 . The occupation model
values were (per year): F = 5600 , d = 0.5 , g × s = γ = 0.1 , fh = 0.6 ,
Amin = 0 , Amax ≈ ∞ , and pso = 0.0 . Note the values chosen for the age-
dependent parameters result in an occupation model with no age structure.
All stochastic model results were averaged over ten runs for all figures. The
confidence bounds were omitted from these figures for clarity.

The standard deviations for Figure 3 were 433 plants for the scatter
model, for the occupation model with pdist = 0.8 it was 246 plants, for
pdist = 0.2 it was 1556 plants, and for pdist = 0.1 it was 858 plants. Figure 3
shows the total number of plants as a function of time, illustrating that the
reaction diffusion, integro-difference and scatter models are mostly identical,
which is to be expected since we specifically chose the parameters to match.
The slight differences between the maximum values are due to a combination
of discretisation errors in the integro-difference and scatter models, and the
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Figure 3: Total number of plants as a function of time: RD = reaction
diffusion; ID = integro-difference; OM = occupation model.
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Figure 4: Position of the moving weed front for different models.

free boundary at the bottom where plants are leaving the region. The to-
tal number of plants is calculated differently for the occupation model since
N = 0 or 1, where the total number of sites occupied is multiplied by the
carrying capacity, C = 20 branches/m2, as used in the other models. An
interesting result shown in Figure 3 is that as we lower the probability of
disturbance pdist, the occupation model better matches the other models,
becoming a good match at pdist = 0.1 .

The standard deviations for Figure 4 were 0.80 metres for the scatter
model, for the occupation model with pdist = 0.8 it was 0.71 metres, for
pdist = 0.2 it was 2.6 metres, and for pdist = 0.1 it was 2.9 metres. Figure 4
shows the position of the travelling weed front with the reaction diffusion,
integro-difference and scatter models well matched. The occupation model
with pdist = 0.8 progresses one grid at most time steps, resulting in the pre-
dominately linear relationship shown. However, as we further decrease pdist
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Figure 5: Weed front speed as a function of growth for different models.

the element of stochasticity increases, resulting in more fluctuations. Inter-
estingly, where pdist = 0.1 was a good match between the occupation and
other models for the total plant population, pdist = 0.2 is a better match for
the travelling weed front.

The standard deviations for Figure 5 were 0.027 m/month for the scatter
model, for the occupation model with pdist = 0.8 it was 0.045 m/month, for
pdist = 0.2 it was 0.080 m/month, and for pdist = 0.1 it was 0.096 m/month.
Figure 5 shows the speed of the weed front as a function of the growth
term where the reaction diffusion, integro-difference and scatter models are
matched. In contrast, the occupation model has very different behaviour
with an asymptote evident. This is due to the deficiency in the cellular
automata construct as the nearest neighbour rules artificially restrict the
dispersal of the weed. The decrease in wave speed with decreasing pdist is in
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agreement with the results shown in Figure 2. These results do not match
the theoretical calculation since the latter requires time frames of the order
of 17 years, whereas the time frame for eradication of weeds is in the order
of 4 years. Hence the simulations were only run to forty months. We have
verified that our numerical implementations reach the theoretical speed, but
the results are not shown here.

4 Conclusion

We expected, and found, the reaction diffusion, integro-difference and scatter
models to be consistent when Gaussian kernels were used, which is a test of
the accuracy of our numerical implementations. The parameters for the
occupation model could be matched for Figure 3 or Figure 4, but not exactly
for both. We also found the speed of the weed front for the occupation
model was severely limited by the nearest neighbour distribution kernel and
the effect of the probability of disturbance is significant. Further work is
required in modelling, measuring and analysing the effect of finite stochastic
scatter on ‘clumpiness’ and hence propagation speed, as well as characterising
how the occupation model parameters affect results compared with the other
models.
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