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Abstract

Airborne maritime surveillance operations are part of Australia’s
national security. The determination of an efficient route to approach
each ship detected to within the classification range is a difficult vari-
ation on the classical Travelling Salesman Problem because, for exam-
ple, the ships are moving. In this article, variations in the detection
and classification ranges are investigated, with greater classification
ranges resulting in route length reductions of up to 20%. Including
a finite turning circle radius for an aircraft can cause in increase in
route length of up to 20% for a turning circle radius of 10 nautical
miles.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/341
for this article, c© Austral. Mathematical Soc. 2008. Published April 15, 2008. ISSN
1446-8735
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1 Introduction

The Australian Defence Force (adf) and the Australian Customs Service (acs)
conduct surveillance of the Australian Exclusive Economic Zone and the Aus-
tralian coastline to detect, classify and possibly apprehend vessels engaging
in illegal activities, with annual costs to the acs of $237 million [2]. Im-
proving the efficiency of surveillance operations is of obvious economic and
national security benefit. Surveillance is undertaken primarily with a variety
of aircraft and some ships. The aircraft used include AP-3C Orion (adf),
Dash 8 (acs), helicopters and small fixed-wing unmanned air vehicles [2, 3].

The Defence Science and Technology Organisation (dsto) sponsored a
maritime surveillance search problem at the 2007 Mathematics-in-Industry
Study Group (misg) [7]. The aim was to find a computationally feasible
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search method that maximised ship (target) classifications while minimising
the time taken (thus finding the shortest route) to search an Area of Inter-
est (ai). dsto uses such models to conduct operations research in areas such
as tactics development and future capability assessment. The problem was
presented and considered as a variation on the traditional travelling salesman
problem (tsp).

This article considers a small subset of the maritime surveillance problem
and does not claim to solve the entire problem which is beyond the scope
of investigation here. Our focus is two-fold: an initial investigation into the
impact of variable detection and classification ranges on classification rate
and route length; and the effect of including aircraft turning circles on route
length. A related article [8] includes a comparison of the efficiency of different
search techniques across a range of ship speeds.

Several assumptions are made which will be progressively relaxed in fu-
ture work in order to provide a more realistic representation of the actual
scenario. Examples of issues not considered here are variations in aircraft
altitude and target prioritisation (but considered by Grob [4]) and a max-
imum aircraft flight time (but considered by Marlow et al. [8]). There are
also numerous other factors that influence maritime surveillance operations
that have not been taken into account such as variable speed aircraft and
ships, ships taking evasive actions, changeable weather and sea conditions
affecting sensor performance and historical information from earlier flights
and shipping records.

2 The maritime surveillance problem

An ‘S’ shaped search pattern typical of those used in maritime surveillance
(for example, in barrier patrols [1]) is shown in Figure 1. The aircraft must
visit each waypoint (A, B, C etcetera) but can deviate along the way to in-
vestigate detected ships which then need to be classified. Generally ships in
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the ai are detected by sensors onboard the aircraft; predominantly by radar
although Electro-Optic and Infra-Red sensors are also used [2]. A typical ai
is substantially larger than the detection range (denoted rd) so the aircraft
flies a search pattern to cover as much of the ai as possible. The aircraft
approaches the ship to within the classification range (usually visual classifi-
cation, denoted rv) and then returns to the predetermined search pattern.

We consider a simplified version of the surveillance scenario where we only
investigate the route between two waypoints on the predetermined search
path with deviations to visit detected ships. Figure 1 shows a typical route
between waypoints A and B. The problem is complicated since the ships are
moving with typical speeds between 0 and 30 knots (nautical miles per hour);
aircraft speed is typically between 100 and 300 knots.

The detection range (rd) depends on the types of sensors used. For sim-
plicity, we assume that if a ship is within radar detection (or classification)
range, it is detected (or classified), or else it is not. In reality, radar detec-
tion (forming a target track) and classification (determining target type) are
not simple tasks and depend on target cross-section, target aspect angle and
weather conditions.

As we are considering a subset of the larger problem, namely the effect
of the classification and detection ranges, we restrict ourselves to finding the
minimum distance travelled whilst classifying all ships that are detected. We
do not take into account any budgeting constraints such as fuel usage or
aircrew considerations which are considered in other studies [4, 8].

A smaller detection range means the predetermined search path is longer
to ensure good coverage of the ai, as more sweeps of the region may be
needed. The shortest route is also longer since less ships are detected at
any given time and therefore there is less information at each time step to
determine a shortest route.
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Figure 1: Schematic diagram of the area of interest showing the predeter-
mined base route, the aircraft detection range and an example actual route.
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3 Detection and classification ranges

3.1 TSP formulation

At any time there may be many ships detected and so the shortest route to
visit those ships is sought as a variation on the classical tsp, with new infor-
mation added as ships are detected and the further complication of moving
ships. The shortest route is found by solving a tsp of visiting all detected
ships and then flying to the next waypoint. During flight new ships are
detected and the shortest route is recalculated to include these.

When ships are detected their velocity (speed and heading) is also deter-
mined. If ones assumes the ship velocities are constant, then heuristic algo-
rithms will solve these moving target tsps [5, 6, 9] although they are more
complicated and slower than stationary tsp heuristics. The assumption of
constant velocity is reasonable for large commercial shipping (container ships
and the like) but questionable for smaller vessels (fishing boats, smuggling
operations). We assume that ship velocity is constant in a short time scale (of
the order of minutes) but make no assumptions about their long term veloc-
ity. As such we do not use the moving target heuristics mentioned above but
rather solve the problem as a sequence of quasi-stationary tsps at frequent
time intervals. At each time step (usually one minute) the current location
of the ship is used to determine the tsp tour. We also constrain the aircraft
to remain in the ai at all times. Once ships are classified, they are removed
from the tsp tour.

The tsp is solved numerically using a Genetic Algorithm (ga) in Mat-
lab.1 Ship location and detection are updated once per minute. The ga
uses a population size 10–20 times the total number of ships in the ai. The
mutation rate used was 0.85. The termination condition used was typically

1The code is available from the Matlab Central file exchange, http://www.
mathworks.com/matlabcentral.

http://www.mathworks.com/matlabcentral
http://www.mathworks.com/matlabcentral
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around 10 times the number of ships in the ai. An entire simulation, with
the aircraft traversing from the beginning waypoint to end waypoint and
with recalculations every minute, has a computational run time of less than
a second for small number of detects (5–10), rising to around 10 seconds for
the largest detection ranges with 25 ships. For low ship density situations
with few ships detected at any one time full enumeration of all the possible
routes is faster than using the ga and there are also other algorithms that
give good solutions in a shorter time frame than the ga used here. Since
the simulation’s computational time is short in the current work the precise
algorithm used is not an issue that needs to be considered here provided the
optimal tour is found. In a real scenario the number of ships in the tsp tour
is highly variable and can be quite large. Due to this we chose an algorithm
that can handle large numbers of ships at the expense of some computational
time in the low density situations. Due to space limitations we have concen-
trated on the results of the method rather than giving a full account of the
methods used which can be obtained from the authors.

3.2 Results and discussion

Figure 2 is an example of three routes using different detection ranges. These
results are for a segment of a surveillance operation typical of an Orion AP-
3C with a straight line distance from A to B of 300 n mile (nautical mile),
aircraft speed of 250 knots and 15 ships randomly distributed over the ai.
Firstly, rd is set to 500 n mile which gives full knowledge of all ships in the
ai and is typical of information from satellite detection when it is possible.
Secondly, rd is set to 50 n mile which is typical of radar detection in reasonable
weather.

The ship classification range (rv) is also weather dependent and varies
from 0 to 20 n mile. Here we use rv = 3 n mile, meaning the aircraft flies
close to the ship, and rv = 20 n mile which is typical of classification in good
weather. Table 1 gives the mean length of the calculated route for different
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Figure 2: Three optimal routes between two waypoints for 15 ships with
various detection and classification ranges: red dotted line rd = 500 , rv = 3 ,
blue short dashed rd = 50 , rv = 3 and black long dashed rd = 50 , rv = 20 .

numbers of ships in the ai for both full knowledge (rd = 500) and limited
knowledge (rd = 50). The means are over 1000 different random distributions
of ships and velocities, with ships travelling at speeds uniformly distributed
between 0 and 15 knots and in uniformly random directions. The change in
classification range from 3 to 20 n mile gives an approximately 20% shorter
route for the same number of ships classified.

Figure 2 shows that the smaller detection range meant that one outlying
ship was not detected. This is a typical outcome unless an effort is made to
guarantee complete coverage of the ai. When the aircraft deviates to classify
a ship it leaves a gap in the ai that has not been scanned for ships. Table 1
indicates that 10 to 15% of ships are not detected for the smaller detection
range cases. A smaller detection range leads to a longer route as the aircraft
must deviate when new ships are detected. When the classification range is
larger, then the route is generally smoother and therefore shorter.
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Table 1: Optimal route length in n mile with different detection range (rd)
and classification range (rv) for different numbers of ships in the ai. Also
shown are the average number of ships detected and classified. Values are
averages of 1000 simulations with standard deviations shown in brackets.
Number ships 5 10 15 20

rd = 500 , rv = 3 391.3 (43.0) 533.1 (66.3) 683.2 (107) 910.3 (181)
5 (0) 10 (0) 15(0) 20(0)

rd = 50 , rv = 3 374.8 (33.0) 463.8 (50.2) 570.8 (78.2) 697.6 (93.0)
4.50 (0.72) 8.84 (0.99) 13.5 (1.4) 18.6 (1.4)

rd = 500 , rv = 20 334.5 (24.4) 410.4 (45.7) 480.7 (55.5) 589.0 (106)
5 (0) 10 (0) 15(0) 20(0)

rd = 50 , rv = 20 323.7 (17.1) 369.5 (26.8) 416.9 (41.7) 472.6 (43.1)
4.50 (0.69) 8.95 (1.0) 13.4 (1.4) 18.2 (1.4)

4 Effect of aircraft dynamics

4.1 Problem formulation

We consider the aircraft heading required to investigate a moving ship with
finite turning circle, rc, and classification range, rv. The aircraft is assumed
to have a constant speed v and initial heading φi, with the ship moving
with constant speed w, fixed heading θ and initial position (x0, y0). The aim
is to find the optimal heading of the aircraft φ and the resultant time to
intersection tf . We assume the aircraft is at (0, 0) when t = 0 as illustrated
in Figure 3. The angles ξ0 and ξ1 are the parameter angles representing
position around the turning circle at the beginning and end of the turn. The
angle η represents the interception point on the classification circle.

Since the aircraft only has to come within a distance rv of the ship in order
to classify it, the aircraft path (x(t), y(t)) must intersect the circle around
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Figure 3: An aircraft initially on heading φi, moving at speed v, begins
turning at (0,0) at t = 0 with a turning circle of radius rc with centre (xc, yc).
The turn ends when t = t1 at (x1, y1) and moves along a heading φ until it
reaches its classification range rv. The ship moves at speed w on heading θ.
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the ship defined by

x(t) = x0 + wt cos θ + rv cos η ,

y(t) = y0 + wt sin θ + rv sin η , (1)

where η is the angle parameter defining the classification circle (see Figure 3).

The size of the turning circle depends on the aircraft speed and turn rate.
The position of the aircraft is governed by three equations:

• for t ≤ 0 , prior to the aircraft beginning to turn,

x = vt cosφi , y = vt sinφi ; (2)

• for 0 ≤ t ≤ t1 , when the aircraft is turning,

x = xc + rc cos

(
vt

rc

+ ξ0

)
, y = yc + rc sin

(
vt

rc

+ ξ0

)
; (3)

• for t > t1 , when the aircraft is on a heading to the ship,

x = x1 + v(t− t1) cosφ , y = y1 + v(t− t1) sinφ . (4)

By geometry

ξ0 = φi −
π

2
, ξ1 =

3π

2
+ φ . (5)

The time, t1, that the aircraft finishes turning is

t1 = (2π + φ− φi)rc/v (6)

at position (x1, y1) given by equations (3) with t = t1 .

Thus equating equations (4) and (1) and doing some simple algebra gives

x0 + rv cos η + wt cos θ = xc + rc sinφ+ (t− t1)v cosφ , (7)
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y0 + rv sin η + wt sin θ = xc − rc cosφ+ (t− t1)v sinφ , (8)

where our unknowns are the aircraft heading φ, the intersection time t, and
the classification circle angle η, with t1(φ) given in equation (6) and xc, yc, θ,
rv, rc, v and w all known. This system is solved for t(η) and φ(η) by squaring
and adding the equations and then η is determined by minimising t(η).

Hence, we obtain a quadratic in t: αt2 + βt+ γ = 0 , with

α = w2 − v2 , (9)

β = 2(x0rv cos η − xc)w cos θ + 2(y0rv sin η − yc)w sin θ + 2v2t1 , (10)

γ = (x0 + rv cos η − xc)
2 + (y0 + rv sin η − yc)

2 − r2
c − t21v2 . (11)

The resultant solution t(φ) is substituted into equation (7) to give an implicit
equation for φ which must be solved numerically. Because η is still not
determined for this most general case, a numerical solution involves iterating
over all η ∈ [0, 2π] and solving the resultant φ numerically for each η before
choosing the value of η which minimises t. An example using four ships,
rv = 5 n mile and rc = 5 n mile is shown in Figure 4.

4.2 Results and discussion

The effect of classification range and turning circle on route length is illus-
trated in Figure 5 for turning circles ranging from 1 to 15 n mile and classifi-
cation ranges from 0 to 6 n mile. The ships are sufficiently spread such that
the classification ranges do not overlap and it is assumed that no new ships
are detected and thus added to the tour. This simulation used an aircraft
travelling at 240 knots and four ships moving at between 10 and 30 knots
spread over an area of roughly 100× 100 n mile2. As expected, route length
increases with turning circle by less than 10% for rc = 5 , approximately 20%
for rc = 10 and approximately 25% for rc = 15 . Similar results occur with
different parameters and more ships. Slope changes occur as the best route



4 Effect of aircraft dynamics C487

−20 0 20 40 60 80

−10

0

10

20

30

40

50

60

70

 

 

plane path
ship positions
plane position

x (n mile)

y
(n

 m
il
e)

Figure 4: Example of an aircraft with a turning circle of radius 5 n mile
classifying four ships.
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Figure 5: Effect on distance travelled when increasing turning circle radius
for varying classification ranges.

may suddenly involve a different order of ships or an anti-clockwise versus
clockwise turn. Notably, the percentage reduction in route length due to
classification range variation is independent of aircraft type.

When classifying, an aircraft often needs to approach the ship on critical
angles to optimise the capability of on-board sensors. By fixing η to such
a critical angle (for example, 45 degrees to the ship’s path), we numerically
showed, for a variety of simulations with similar parameters to that used in
Figure 5, that the difference in distance travelled is of the order 1% for a
single ship and strangely a smaller 0.1% for four ships; errors tend to cancel
out rather than accumulate. For some simulations, fixing η actually led to a
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decrease in total distance travelled to intercept four ships. This is because
our optimisation of η to minimise travel length is for an aircraft visiting a
single ship; it may not be the optimal value when a second ship is visited
and a second turn is required. This non-trivial extension to the problem is
the subject of further work.

5 Conclusion

We studied a maritime surveillance search scenario using a variation on the
traditional travelling salesman technique from operations research. Within
this framework we have examined the effect of detection and classification
range adopted on the route length needed to classify all detected ships when
traversing between two pre-determined waypoints. The difference in classi-
fication ranges accounted for a decrease of up to 20% in total route length
for the search aircraft. In the simplified search scenario used in the study
approximately 10% of ships were undetected when the detection range was
small, even though classification coverage based on the initially planned route
takes in the whole area of interest. Conversely the range of aircraft minimum
turning circle radii used in the study accounted for an increase of up to 20%
in total route length for the search aircraft. Clearly both minimum aircraft
turning circle radius and classification range can have a significant effect on
aircraft route length; aircraft fuel load limits may then impede the search
aircraft’s ability to classify all ships in the designated area of interest.

Future work will incorporate these outcomes into the travelling salesman
solution technique to more correctly determine the shortest route and order
of classifying ships. The work described here will be combined with further
work to consider coverage of the entire ai. It will also examine the effect that
a constraint on the duration of the mission will have on the ability to detect
and classify ships.
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