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Quasi Monte Carlo algorithm for computing
smallest and largest generalised eigenvalues

Behrouz Fathi Vajargah1 Farshid Mehrdoust2

(Received 27 August 2010; revised 3 March 2011)

Abstract

The problem of obtaining the smallest and the largest generalised
eigenvalues using quasi Monte Carlo algorithm is considered. We first
study the results of Dimov and others using three algorithms based
on the power method combined with Monte Carlo and quasi Monte
Carlo methods for evaluating extremal eigenvalue of real matrices. We
present a quasi Monte Carlo algorithm for computing both the smallest
and the largest generalised eigenvalues using Sobol, Halton sequences
and the rand function in Matlab. We finally compare the efficiency of
three employed generators in our algorithm for different pencils.
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1 Introduction

Finding eigenvalues of a given matrix is a necessary task in scientific com-
putations. It is used in many scientific procedures such as in discriminant
analysis, numerical analysis, variance analysis, and principal component anal-
ysis. When analytical or deterministic methods cannot give solutions for
this problem, Monte Carlo methods are legitimate alternative. A primary
reason for this is that in Monte Carlo and quasi Monte Carlo methods only
O(Nl) steps are required to find a desired eigenvalue of a given matrix, where
N is the number of Markov chains and l is an estimate of the chain length in
the stochastic process, which are independent of matrix size n. Secondly, the
algorithms for these methods are inherently parallel [3].

Monte Carlo methods based on the simulation of stochastic process whose
expectations are equal to computationally interesting quantities. These meth-
ods give statistical estimates for the functional of the solution by performing
random sampling of a certain random variable such that its expectation is
the desired functional [1, 4, 5]. Convergence of Monte Carlo methods is
often improved by replacing pseudorandom numbers with more uniformly
distributed numbers known as quasi-random numbers. Quasi Monte Carlo
methods are an alternative approach based on the idea that random Monte
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Carlo techniques are often improved by replacing the underlying source of
random numbers with a more uniformly distributed deterministic sequence. In
other words, quasi Monte Carlo methods use quasi-random or low discrepancy
sequences instead of pseudorandom sequences [7, 8, 9, 10].

Recently, evaluating the dominant eigenvalue of large real sparse matrices
on a cluster of workstation using mpi and the Monte Carlo and quasi Monte
Carlo methods for obtaining the smallest and largest eigenvalue has been
presented [3, 4, 5, 8]. Here, we introduce a quasi Monte Carlo algorithm
for computing the smallest and the largest generalised eigenvalue. We first
studied previous works [3, 4, 5, 8] and then improved these ideas for generalised
eigenvalue based on calculating multiple integrals.

Let A,B ∈ Rn×n be real symmetric matrices, also suppose that the matrix B is
a positive definite matrix. Consider the problem of evaluating the eigenvalues
of the pencil (A,B), that is, the values for which

Ax = λBx . (1)

A generalised eigenvalue problem (1) is said to be symmetric positive definite
(spd) when A is symmetric and B is positive definite. We assume these
conditions throughout the rest of this paper. This nonzero x is said to be an
eigenvector of (1) and the corresponding value of λ is called an eigenvalue.
For simplicity, (λ, x) is called an eigenpair of (1). Problem (1) includes the
standard eigenvalue problem when B = In.

Frequently scientists wish to know some eigenvalues of very large matrices.
For such problems, Krylov subspace methods are well known. The Lanczos
algorithm is a Krylov subspace method for symmetric problems. For non-
symmetric matrices, the methods are Arnoldi and non-symmetric Lanczos [6].
An alternative approach which is more useful in the context of large scale
matrices are Monte Carlo and quasi Monte Carlo algorithms. These algorithms
are almost independent of the dimension of matrix [1, 3, 4].

Using the the quasi Monte Carlo algorithm we develop further recent ideas [4,
5, 8]. Section 2 briefly reviews the pseudorandom and quasi-random sequences
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(that is Halton and Sobol sequences). Section 3 presents the resolvent quasi
Monte Carlo method used to the smallest and the largest generalised eigen-
values and Section 4 gives numerical results that confirm the applicability of
proposed algorithm. Section 5 concludes and discusses our research.

2 Pseudorandom and quasi-random

sequences

Quasi Monte Carlo methods are succinctly described as deterministic versions
of Monte Carlo methods. Determinism enters in two ways: by working with
deterministic points rather than random samples; and by the availability of
deterministic error bounds instead of the probabilistic Monte Carlo error
bounds. The connections between quasi Monte Carlo methods and uniform
pseudorandom numbers arise in the theoretical analysis of various methods
for the generation of uniform pseudorandom numbers. The pseudorandom
sequences simulate random samples from a U(0, 1) distribution and quasi-
random sequences correspond to samples from a U(0, 1) distribution. One
can find several quasi-random sequences, such as the Halton sequences, Sobol
sequences, Faure sequences, and Niederreiter sequences [7, 9, 10].

2.1 The Halton sequence

One of the most important low discrepancy sequences, used by many re-
searchers, is the Halton sequence. Its definition is based on the radical inverse
function

Φp =
b0

p
+
b1

p2
+ · · ·+ bm

pm+1
, (2)

where p is a prime number, and n = b0 + b1p + · · · + bmpm, with integer
0 6 bj < p . The Halton sequence, Xn, in s-dimensional is then defined as

Xn = (Φp1 ,Φp2 , . . . ,Φps), n = 0, 1, . . . , (3)
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where the integer numbers p1, . . . ,ps are greater than one and pairwise prime.
Most of the times, they are chosen as the first s primes. We use optimal
Halton sequences [2].

2.2 The Sobol sequence

The Sobol sequence is defined in base 2. To generate the jth component of
the points in a Sobol sequence, we need to choose a primitive polynomial of
some degree sj in the field Z2:

xsj + a1,jx
sj−1 + · · ·+ asj−1,jx+ 1 , (4)

where coefficients a1,j, . . . ,asj−1,j ∈ {0, 1}.

The jth component of the ith point in a Sobol sequence, is

xij = i1v1,j ⊕ i2v2,j ⊕ · · · , (5)

where vk,j = mk,j/2
k, and the sequence of positive integer {m1,j,m2,j, . . .} are

defined by the recurrence relation

mk,j = 2a1,jmk−1,j ⊕ 22a2,jmk−2,j ⊕ · · · ⊕ 2sjmk−sj,j ⊕mk−sj,j , (6)

where ⊕ is the bit-by-bit exclusive-or operator and ik is the kth digit from
the right when i is written binary i = (· · · i3i2i1) [10].

3 Resolvent quasi Monte Carlo method

Here, we describe some results on quasi Monte Carlo methods based on
resolvent matrix and then extend that for evaluating the generalised eigenvalue
problem. We want to solve (1): since B is symmetric and positive definite, then
it admits the Schur decomposition, that is uTBu = D = diag(d1, . . . ,dn) and
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let L = uD1/2 = diag(
√
d1, . . . ,

√
dn), where L is a lower triangular matrix.

So (1) is converted to

(L−1AL−T)(LTx) = λ(LTx)·

Hence any eigenvalue λ satisfying equation (1) must be the eigenvalue of the
symmetric matrix R = L−1AL−T , and the eigenvectors of which take the form
y = LTx . Now we consider computing the eigenvalues of the equation

Rx = λx (7)

where the matrix R is symmetric and therefore the value of λ is real. Let us
order all the eigenvalues of R in descending order

λmax = λ1 > λ2 > · · · > λn = λmin.

Now, consider an algorithm based on Monte Carlo iterations by the matrix R
resolvent operator Rq = [I− qR]−1, where q is a parameter chosen such that
|q| < 1/‖R‖.

We have

Rmq = [I− qR]−m =

∞∑
i=0

qiCim+i−1R
i. (8)

The eigenvalues of the operators [I − qR]−1 and R are connected with the
equality

µ =
1

1− qλ
.

If q > 0 , then the largest eigenvalue Rq of the resolvent matrix corresponds
to the largest eigenvalue of the matrix R; but if q < 0 , then it corresponds to
the smallest eigenvalue of the matrix R. Also, as m→ ∞ [4],

µ(m) =
([I− qR]−mf,h)

([I− qR]−(m−1)f,h)
−→ µ =

1

1− qλ
, f,h ∈ Rn. (9)
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Similar to the Monte Carlo methods, but in the continuous case, suppose the
existence of the following random trajectory (Markov chain) Tl of length l
starting at state x0

Tl : x0 → x1 → · · ·→ xl,

where xj ∈ Dj = [j− 1, j) means the chosen state, for each j = 1, 2, . . . , l and
D =

⋃n
j=1Dj = [0,n). Assume that

p(x) = pi , x ∈ Gi , (10)

and
p(x,y) = pij , x ∈ Gi , y ∈ Gj , (11)

are the probability of starting the chain at x0 and the transition probability
from state xi to yj, respectively.

Now, define the random variable WQ
j based on quasi Monte Carlo methods

by the recursion equation

W0 =
h(x0)

p(x0)
, WQ

j =WQ
j−1

r(xj−1, xj)

p(xj−1, xj)
, j = 1, 2, . . . , l . (12)

We have [3]
E[Wifki ] = (Aif,h), i = 1, 2, . . . . (13)

We write

(Rmq f,h) = E

[ ∞∑
i=0

qiCim+i−1(R
if,h)

]
, m = 1, 2, . . . . (14)

Using the Rayleigh quotient [3],

λ ≈
E
∑l

i=0 q
iCim+i−1W

Q
i+1

E
∑l

i=0 q
iCim+i−1W

Q
i

. (15)

Therefore we write

λ ≈
∑l

i=0 q
iCim+i−1

∫
D0

∫
D1
· · ·

∫
Di
WQ
i+1dx0 · · ·dxi+1∑l

i=0 q
iCim+i−1

∫
D0
· · ·

∫
Di
WQ
i dx0 · · ·dxi

. (16)
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Using some simple calculations,

λ ≈
∑l

i=0 q
iCim+i−1

∫
Di+1
· · ·

∫
D0
h(x0)r(x0, x1) · · · r(xi, xi+1)dx0 · · ·dxi+1∑l

i=0 q
iCim+i−1

∫
Di
· · ·

∫
D0
h(x0)r(x0, x1) · · · r(xi−1, xi)dx0 · · ·dxi

.

(17)
The above integrals are multi-dimensional integrals and therefore we compute
an approximation using quasi Monte Carlo integration [3, 7, 9]. The following
theorems give the error bound for this approximation. Before stating, it is
necessary to explain some preliminaries about discrepancy.

Definition 1 Let S be a point set consisting of x1, x2, . . . , xN ∈ [0, 1]s. For
an arbitrary subset A of [0, 1]s, we define

#(A;S) =

N∑
n=1

χA(xn)

where χA is the the characteristic function of A. Suppose that A is a nonempty
family of Lebesgue measurable subsets of [0, 1]s. Define the discrepancy of a
point set S by

DN(A;S) = sup
A∈A

∣∣∣∣#(A;S)

N
− λs(A)

∣∣∣∣
where λs(A) denotes the Lebesgue measure of A in Rn.

Definition 2 The star discrepancy D∗N(A;S), when s = 1 is defined by

D∗N = D∗N(x1, . . . , xN) = sup
06u61

∣∣∣∣#(A;S)

N
− u

∣∣∣∣ .
Two theorems relate error bounds in the quasi Monte Carlo methods.

Theorem 3 ([7]) If f has bounded variation V(f) on [0, 1], then for any
x1, . . . , xN ∈ [0, 1],∣∣∣∣∣ 1N

N∑
n=1

f(xN) −

∫ 1
0

f(x)dx

∣∣∣∣∣ 6 V(f)D∗N(x1, . . . , xN) .
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Theorem 4 ([7]) Suppose that f is continuous on [0, 1], then for any u, v ∈
[0, 1] and x1, . . . , xN ∈ [0, 1],∣∣∣∣∣ 1N

N∑
n=1

f(xN) −

∫ 1
0

f(x)dx

∣∣∣∣∣ 6 sup
|u−v|6D∗N

|f(u) − f(v)| .

Remark 5 Based on the above theorems, let

f(x0, . . . , xi) = h(x0)r(x0, x1) · · · r(xi−1, xi),

then∣∣∣∣∣ 1N
N∑
j=1

f(x
(j)
0 , . . . , x

(j)
i ) −

∫
Di

· · ·
∫
D0

f(x0, . . . , xi)dx0 · · ·dxi

∣∣∣∣∣ 6 |h|‖Ri‖D∗N .

4 Numerical results

We present some numerical results to show the performances of quasi Monte
Carlo algorithm in our implementation. We ran our algorithm on a workstation
Intel(R) 1.83 GHz Dual cpu, 2.00 GB ram and matlab software 7.6(R2008a).
In this software, we employed the function eig(A,B) to contrast to our
algorithm results. In the first example, we choose the pencil (A,B)128×128,
where the matrix A is ill conditioned, (cond(A) = 5.7710×1014). Our method
is applied for a general matrix of dimension 1000× 1000 whose elements are
generated by a uniformly distributed random number generator, in the second
example. Figures 1–3 plot the prns and qrns sequences. Figure 4 compares
the relative error of the largest and smallest eigenvalues.
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Figure 1: Random points generated by rand function, n = 5000.
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Figure 2: Random points generated by Halton sequence, n = 5000.
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Figure 3: Random points generated by Sobol sequence, n = 5000.
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Figure 4: Comparison relative error for three cases.



4 Numerical results E54

Table 1: Numerical results for Example 6.
Random seq. λmax Error λmin Error Time (S)
prns-rand 145.1295 0.0089 −384.0085 0.0085 0.07
qrns-Halton 145.1383 1.00× 10−4 −384.0041 0.0041 0.09
qrns-Sobol 145.1378 6.00× 10−4 −384.0074 0.0074 0.1

Table 2: Relative error for computing λmax.
Number of chains Relative error

N rand sequence Halton sequence Sobol sequence
1000 5.8835× 10−4 1.5295× 10−4 1.2315× 10−4
2000 4.9545× 10−4 5.7002× 10−5 2.2448× 10−4
3000 5.4322× 10−4 3.7768× 10−5 1.4016× 10−4
4000 5.5958× 10−4 3.7179× 10−5 9.8268× 10−5
5000 5.6136× 10−5 1.5136× 10−5 9.4723× 10−5

Example 6 Consider the generalised eigenvalue problem (1), where

A =



3n− 1 −1 · · · −1

−1 3n− 1 −1 · · · ...
...

. . . . . . . . .

−1 · · · −1 3n− 1 −1
−1 · · · −1 3n− 1


3n×3n

,

B =


C

C
. . .

C


3n×3n

and C =

−2 1 0

1 0 −2
0 −2 1

 .

Example 7 In Table 2 the relative errors for computing λmax and λmin on
randomised pencil (A,B)1000×1000 is outlined.
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Table 3: Results for computing λmin and λmin.
Martix dimension qrns-Halton

n λmax λmin Time (s)
100 1.5101× 10−4 0.9300× 10−3 0.023915
200 1.2108× 10−4 0.8312× 10−3 0.029173
400 6.3472× 10−5 2.7768× 10−4 0.039850
800 9.4072× 10−6 3.7179× 10−5 0.083722
1600 4.5975× 10−6 1.9136× 10−5 0.153430
3200 1.2118× 10−6 1.0516× 10−5 0.332421

Example 8 In Table 3 the relative errors and computational time using quasi
Monte Carlo algorithm (qrns-Halton) for computing λmin on randomised
pencils (A,B)n×n is outlined.

5 Concluding remarks

The computational results in Table 1 are obtained based on the rand function
in matlab software and two Halton and Sobol quasi-random numbers, for λmax

and λmin of a given matrix. Table 2 shows the relative error of the employed
algorithm using various number of Markov chains N. The results in Table 1
and 2 show that the Halton sequence of quasi-random numbers has better
improvement, in both the error and convergence, than Sobol quasi-random
number and rand random generators. However, the Sobol sequence up to
N = 3000 is slightly better than the rand generator, but with increasing the
number of Markov chains N, the accuracy of the rand generator is better
than the Sobol sequence. Halton sequence in error and accuracy is the most
important generator between above employed generators. Also, the proposed
algorithm is efficient when each element of the pencil (A,B) is ill conditioned
(Example 6).
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Figure 5: cpu time for various matrices
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