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Thin film models with constant source: model
selection in a stochastic setting
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Abstract

Dunn and Tichenor [Atmospheric Environment, 22:885–894, 1988]
proposed a class of differential equation models to describe the phe-
nomenon of transient sink behaviour for organic emissions exhibited by
interior surface films in state-of-the-art emission test chambers. The
proposed model selection scheme embeds the derived models within
a class of stochastic differential equations. The quality of model fit
varies inversely with the strength of the stochastic forcing term; that
is, if the model is adequate the stochastic forcing term should be
small. Data from a particular application where the source can be
considered to be constant demonstrates the approach. The approach
can be applied to any phenomenon that is modelled by a class of linear
differential equations where different models are embedded within a
full model.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/344
for this article, c© Austral. Mathematical Soc. 2008. Published January 23, 2008. ISSN
1446-8735
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1 Introduction

Interior surface films in state-of-the-art emission chambers can act as a tran-
sient sink for organic emissions according to Dunn and Tichenor [3]. They
developed a class of differential equations to model this phenomenon. Within
their setting they have a full model, sink model, vapour pressure model, and
dilution model. The sink model, vapour pressure model and dilution model
are embedded within the full model. This work is outlined in Section 2.
Dunn and Tichenor choose the ‘best’ model on the basis of the model which
has the smallest residual sum of squares.

Section 3 places the class of differential equations proposed by Dunn and
Tichenor [3] within a stochastic setting by extending the work of Osborne and
Prvan [4]. The stochastic forcing term is used to choose the ‘best’ model since
the models are embedded. The quality of the model fit varies inversely with
the strength of the stochastic forcing term; that is, if the model is adequate
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Figure 1: Flow among the compartments.

the stochastic forcing term should be small. Within this framework it is
possible to come up with several ‘best’ models; if this happens, the simplest
‘best’ model is chosen, that is, the model with the least parameters.

This article demonstrates how the best model is chosen within this frame-
work on the basis of the stochastic forcing term. In Section 4 experimental
data from a particular application where the source is considered to be con-
stant is used to demonstrate the approach and the results are discussed.

2 General form of thin film models

According to Dunn and Tichenor [3], interior surface films in state-of-the-
art emission chambers act as a transient sink for organic emissions. A class
of differential equations was developed by them to model this phenomenon.
Within their setting it is possible to consider four classes of models: full,
sink, vapour pressure and dilution.

Dunn and Tichenor [3] postulate a test chamber system consisting of four
mathematical compartments: the source, the well mixed chamber contents,
an exit, and a sink. The source is a film source which may be decreasing (for
example carpet glue on an inert carrier) or constant (for example a cake of
moth crystal). The diagram in Figure 1 illustrates the rate constants that
describe the flow among the compartments. Here A is the initial mass to



2 General form of thin film models C395

be emitted by the source, x = x(t) is the mass emitted to the chamber by
time t, y = y(t) is the mass exiting the chamber by time t, and w = w(t) is
the mass in the sink at time t. The concentration in the chamber at time t
is C(t) = (x− y−w)/V where V is the chamber volume. As in practice the
concentration in the chamber is observed at different times t.

In a well mixed chamber Dunn and Tichenor [3] state that the system is
adequately described by the following set of ordinary differential equations

dx

dt
= k1g(x, t)− k5(x− y − w) , (1)

dy

dt
= k2(x− y − w) , (2)

dw

dt
= k3(x− y − w)− k4w . (3)

The right hand side of Equation (1) defines the emission rate of the source at
time t. According to Equation (1) the rate of introduction of material into
the chamber is proportional to g(x, t) which is a function of time and the
amount already emitted, while being inhibited by the mass in the chamber,
or equivalently, chamber concentration since the chamber volume is constant.
The function g(x, t) describes the potential for emissions from the source into
the chamber. According to Equation (2) the emission rate from the chamber
is proportional to the amount of mass (or concentration) in the chamber.
Equation (3) states that the rate at which material moves to the sink is
proportional to the mass (or concentration) in the chamber, while the rate
of removal from the sink is proportional to the amount already in the sink.
The air flow rate is fixed during the experiment. Assuming a constant air
flow rate F through the chamber we have that k2 = F/V , the number of
air changes in unit time. The full set of models possible in this setting are
summarized in Table 1.

For constant source models the source acts as if it were a constant emit-
ter for a finite period of time. A particular example given by Dunn and
Tichenor [3] is the moth crystal cake. The emission rate of the moth crystal
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Table 1: Full set of models.

Models
Full k3 6= 0 k5 6= 0
Sink k3 6= 0 k5 = 0
Vapour pressure k3 = 0 k5 6= 0
Dilution k3 = 0 k5 = 0

cake is limited by its surface area so is a good approximation to a source
which acts as a constant emitter. Effectively, for a finite period of time, the
source tends to be infinite and if the potential for emissions is constant dur-
ing the time period considered then g(x, t) = 1 . Section 4 looks at their test
labelled 10.1.

3 Thin film models in a stochastic setting

We first look briefly at the stochastic formulation of the smoothing spline
and then extend this to fit thin film models in a stochastic setting.

3.1 Stochastic formulation of smoothing spline

Suppose that the data (t1, z1), . . . , (tn, zn) are given and it is assumed that
the data is decomposed as a signal plus noise model:

zi = f(ti) + εi , εi ∼ N(0, σ2) , i = 1, . . . , n . (4)
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We could use a smoothing spline to fit the ‘signal’ f(t). A smoothing spline f
is the minimizer of

1

n

n∑
i=1

(zi − f(ti))
2 + µ

∫ tn

t1

(
f (m)(t)

)2
dt . (5)

The resultant curve is a piecewise polynomial of degree 2m− 1 with 2m− 2
continuous derivatives.

Wahba [7] modelled the signal by the stochastic differential equation

dmx

dtm
= σ
√
λ
dω

dt
, (6)

where ω(t) is a Wiener process with unit dispersion parameter and smoothing

parameter λ = 1/µ . Let x(t1) =
[

x(t1) x′(t1) · · · x(m−1)(t1)
]T

be the
vector of initial conditions on (6). Wahba shows that if x(t1) has a diffuse
prior distribution; that is x(t1) ∼ N(0, γ2Im) and letting γ2 →∞ , then

f(t) = lim
γ→∞

E{x(t) | z1, . . . , zn} , (7)

where E{x(t) | z1, . . . , zn} is the conditional expectation of x(t) given the
data z1, . . . , zn .

Wecker and Ansley [9] presented a stochastic formulation of a polynomial
smoothing spline using this result.

The stochastic differential equation (6) is written as

dx

dt
=

(
0m−1 Im−1

0 0T

)
x + σ

√
λ
dω

dt
em , (8)

and the observation equation (4) as

z(ti) = eT1 x(ti) + εi , (9)
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where e1 is a vector with 1 in the first position and zeroes elsewhere.

For given λ the Kalman filter is used to compute x(ti | i), the con-
ditional expectation of x(ti) given observations z1, z2, . . . , zi and x(ti+1 | i),
the conditional expectation of x(ti+1) given observations z1, z2, . . . , zi . These
quantities and their associated variances are needed to calculate x(ti | n), the
conditional expectation of x(ti) given all the observations z1, z2, . . . , zn . To
initiate the Kalman filter we use x(t1 | 0) = 0 (an estimate of x(t1) given no
data) and place a diffuse prior on it. To do this we let the variance of x(t1 | 0)
be S1|0 = γ2Ip where γ → ∞ . In practice we set γ to be large and it was
shown by Osborne and Prvan [4] that the effect of the diffuse prior disappears
by the mth step. The smoother developed by Rauch, Tung and Striebel [6],
which we will refer to as the rts Smoother, is used to compute x(ti | n). For
ti−1 ≤ t ≤ ti the interpolation smoother is used to compute x(t | n) and the
first entry will be the point estimate of the signal f at point t, the smooth-
ing spline evaluated at time t. Ansley and Kohn [2] provide a geometrical
derivation of the Interpolation Smoother whereas Anderson and Moore [1]
provide the more traditional derivation. Maximum Likelihood Estimation or
Generalised Cross Validation can be used to find the smoothing parameter λ.
Wahba [8] compared these methods.

3.2 Stochastic formulation of thin film models

Osborne and Prvan [4] considered a generalisation of the stochastic for-
mulation of smoothing splines presented by Wecker and Ansley [9]. Data
(t1, z1), . . . , (tn, zn) are given and the observed zi at time ti is assumed to be
decomposed as the signal plus noise model

zi = hTx(ti) + εi , εi ∼ N(0, σ2) , i = 1, . . . , n , (10)

where h,x(ti) ∈ Rm and yi, εi ∈ R. We are only considering h constant.
The errors εi are assumed to independent and x(t) satisfies the stochastic
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differential equation
dx

dt
= Mx + σ

√
λ
dω

dt
, (11)

where M : Rm → Rm , ω(t) is a m-dimensional Wiener process independent
of εi, i = 1, 2, . . . , n , satisfying, for positive semi-definite W : Rm → Rm

given,
E{(ω(t+ δ)− ω(t))(ω(t+ δ)− ω(t))T} = Wδ . (12)

The smoothing parameter λ defines the relative scale of the two noise pro-
cesses.

To place thin film models in a stochastic setting we generalise the stochas-
tic differential equation for generalised smoothing splines (11) to

dx

dt
= Mx + g(t) + σ

√
λ
dω

dt
, (13)

where M : Rm → Rm and ω(t) is a m-dimensional Wiener process as de-
scribed above. The observation equation (10) remains the same.

We now obtain the state space formulation of the extended generalized
smoothing spline. Let X(t, t1) be the fundamental matrix of the associated
homogeneous differential equation. That is,

dX(t, t1)/dt = MX(t, t1) , X(t1, t1) = Im . (14)

The solution to the stochastic differential equation (13) satisfying x(t1) = x1

is

x(t) = X(t, t1)x1 +

∫ t

t1

X(t, s)g(s) ds+ σ
√
λ

∫ t

t1

X(t, s)
dω

ds
ds . (15)

This solution is written in the form of a recursion relation as

xi+1 = Xi+1xi +

∫ ti+1

ti

X(ti+1, s)g(s) ds+ σ
√
λui+1 , (16)
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with xi = x(ti) , Xi+1 = X(ti+1, ti) and ui+1 = u(ti+1, ti) where ui+1 =∫ ti+1

ti
X(ti+1, s)

dω
ds
ds which has aN(0,Ω(ti+1, ti)) distribution with covariance

matrix

Ωi+1 = Ω(ti+1, ti) =

∫ ti+1

ti

X(ti+1, s)WX(ti+1, s)
T ds . (17)

Covariance matrices are by definition at least positive semi-definite so care
is needed in choosing W to ensure that this holds. This is why we have the
restriction that W be positive semi-definite.

We now have the state space formulation (10) and (16). We now use the
Kalman filter for our particular state space formulation to compute x(ti |
i−1) and x(ti | i). We place a diffuse prior on x(t1) to utilise a generalisation
of Wahba’s result [7] where our point estimate is hTx(t | n). To initiate the
Kalman filter we use x(t1 | 0) = 0 and let the variance be S1|0 = γ2Ip where
γ → ∞ (that is, our diffuse prior on x(t)). In practice we set γ to be large.
The rts Smoother [6] computes x(ti | n). For ti−1 ≤ t ≤ ti we use the
interpolation smoother modified for state equation with forcing term (this is
new) to compute x(t | n).

The forward pass of the Kalman filter and backward pass of the rts
Smoother for given model parameters need only be computed once for fixed λ.
Maximum Likelihood Estimation or Generalized Cross Validation finds the
smoothing parameter as well as the model parameters. A model is plausible
if the smoothing parameter λ is small, whereas for a large value of λ it is not.

For reference the recursions are given below for our particular state space
formulation.

Kalman Filter Initiate with x1|0 = 0 and S1|0 = γ2Im .

xk+1|k = Xk+1 xk|k +

∫ tk+1

tk

X(tk+1, s)g(s) ds ,

Sk+1|k = Xk+1 Sk+1|kX
T
k+1|k + λσ2Ω(tk+1, tk) ,
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dk+1 = hTSk+1|k h + σ2 ,

xk+1|k+1 = xk+1|k + Sk+1|k h d−1
k+1(yk+1 − hTxk+1|k) ,

Sk+1|k = Sk+1|k − Sk+1|k h d−1
k+1 hTSTk+1|k ,

k = 1, . . . , n− 1 .

RTS Smoother Initiate with xn|n obtained from a forward pass of the
Kalman Filter.

xk|n = xk|k + Sk|kX
T
k+1 S

−1
k+1|k(xk+1|n − xk+1|k) , k = n− 1, . . . , 1 .

Interpolation Smoother For ti−1 ≤ t < ti ,

x(t|n) = X(t, ti−1)xi−1|i−1 +

∫ t

ti−1

X(t, s)g(s) ds+ A1(ti, t)(xi|n − xi|i−1) ,

where

A1(ti, t) = [X(t, ti−1)Si−1|i−1X
T
i + Ω(t, ti−1)X(ti, t)

T ]S−1
i|i−1 .

For the thin film models proposed by Dunn and Tichenor [3] we have

xT =
[
x y w

]
, (18)

M =

 −k5 k5 k5

k2 −k2 −k2

k3 −k3 −(k3 + k4)

 , (19)

g(t)T =
[
k1g(x, t) 0 0

]
, (20)

hT =
[

1 −1 −1
]
. (21)

For constant source we have g(x, t) = 1 so g(t) = k1e1 . To ensure that the
covariance matrices associated with the state transition equation (16) are
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positive definite we choose W = X(ti+1, s)
−1(X(ti+1, s)

T )−1 in (17) to give

Ωi+1 = Ω(ti+1, ti) =

∫ ti+1

ti

Im ds = (ti+1 − ti) Im . (22)

With this choice we also have the state transition covariance matrix being
model parameter free.

4 Moth crystal cake example

Dunn and Tichenor [3] present results for 13 emissions tests of moth crystal
cakes. The chamber was cleaned between each test. They fitted the four
constant source models to each data set using non linear least squares to
determine the unknown parameters in the experiment like k1. The param-
eter k2 is fixed by the experiment and is the the number of air changes per
hour. They had V = 166l . The criteria they use to determine the best model
for each test is to choose the model that produces the smallest residual sum
of squares. We look at the test labelled 10.1 in more detail.

The four models were fitted to the data from the test labelled 10.1.
Maximum likelihood estimation obtained the parameter estimates as well
as the smoothing parameter. We dealt with the diffuse prior explicitly set-
ting S1|0 = γ2I3 where γ = 1000 . Details on how to do this are given by
Prvan and Osborne [5]. Each model used as its first starting value the pa-
rameters (excluding smoothing parameter) obtained from the nonlinear least
squares fits to the data. Different values of λ were tried in the initial es-
timates. Matlab 7.1 was used for the programming and the Optimisation
Toolbox function fmincon was used to find the parameter values using the
negative of the partial log likelihood as the function to be minimised.

We only searched for the smoothing parameter in the interval [10−6, 106].
All four models fitted had a smoothing parameter value of 10−6 and the
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Figure 2: Extended generalized smoothing spline fits for full model, vapour
pressure model, sink model and dilution model fitted to 1,4-Dichlorobenzene
emission from moth crystal. The full model, vapour pressure model and sink
model fit are the same solid line, and the dashed line is the dilution model fit.
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resulting fits are shown in Figure 2. The resulting fits to the data shows that
the simplest model, the dilution model, is adequate.

5 Conclusion

The approach presented here can be applied to any linear system of differ-
ential equations used to model an application which has different embedded
candidate models. If the full model fitted to the application data does not
have a small smoothing parameter then the linear system of differential equa-
tions is not a good model for the application. Full model here refers to the
model with the most parameters being considered. Reduced models are those
obtained by setting some of the parameters in the full model to zero. If the
full model fitted to the data does have a small smoothing parameter, then we
can investigate further to see if a reduced model will suffice. A reduced model
is considered to be a candidate model if the smoothing parameter is small
when the reduced model is fitted to the data. This approach is analogous to
backward stepwise regression in statistics but instead of basing our decision
on the reduction in the residual sum of squares we base it on whether the
smoothing parameter is small.
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