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Modeling and simulation of wetting and
spreading phenomena for thin liquid films
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Abstract

We present a mathematical model for the slow three-dimensional
motion of a liquid coating on a substrate with wetting and de-wetting
edges. The equilibrium contact angle is considered to be a material
property of the liquid-substrate system. Substrate chemical hetero-
geneity, or physical roughness, may also be an important determinant
of edge motion. Conversely, dynamic contact angle information is not
required by the model; it is predicted as part of the solution. Calcu-
lated results are compared with experimental observation with good
agreement. Many industrial applications involve liquid coating and
wetting considerations are usually quite important.
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1 Introduction

It has been known for some time that the governing equations for viscous fluid
flow can be considerably simplified if the flow boundaries and the streamlines
are almost parallel. The theory has been used with great success to describe
flow in fully flooded regions between rigid moving boundaries, as in oil filled
bearings where the lubricant is used to prevent metal-to-metal contact [18].
The approximation is commonly known as lubrication theory and can also be
used to good effect when one of the liquid boundaries is free, as is the case for
a thin liquid coating or paint layer [1, 2]. For these thin layer flows, particular
attention is required to allow the advancement or recession of contact lines,
the three phase intersection where liquid, solid and vapor meet. It is now
well known that the usual no-slip boundary condition, applied where a liquid
meets a solid, must be weakened near moving contact lines [9].

Here we give an outline of the mathematical model, including a simple
coupled equation model, that is meant to emulate the effects of evaporation
and drying. We then show the type of results that can be calculated using
this model and show how they compare with experiment. Finally we discuss
the important question of dynamic contact angles, and the possible existence
of contact line angle and speed relationships. We point out how our model
differs from some others.
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2 Outline of the model

The lubrication approximation is invoked to find an unsteady evolution equa-
tion for a number of coating flow problems. Provided that the inclination of
liquid boundaries, Reynolds number ρUh/µ, and capillary number µU/σ are
all sufficiently small, quantitative accuracy can be maintained. The state-
ment of mass conservation is

ht = −∇ ·Q− V , (1)

where the areal flux vector Q arises from several different effects. A rep-
resentative equation, including some but not all of the effects that can be
considered, is [1, 2, 6, 14]

ht = −∇· σh
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Here h is the liquid film thickness, µ is viscosity, t is time, and ∇ is a two
dimensional operator in the substrate coordinates. The terms on the right
represent the effects of surface tension σ, gravity, ‘disjoining pressure’ Π,
shear stress τ , and centrifugal force. Not all terms need be present in any
given problem, and there are sometimes other effects that require inclusion.
Π may take on a number of functional forms. However the associated local
energy density e, satisfying de/dh = −Π , should have a local minimum for
h = h∗ , where h∗ is a ‘slip thickness’ that is required because of the impossi-
bility of moving a contact line without violating the no-slip condition [9, 11].
One choice is

Π = B

[(
h∗

h

)n

−
(
h∗

h

)m]
, n > m > 1 ,

where B prescribes θe, the equilibrium contact angle. In fact θe is a physical
property of the three phase solid, liquid, gas system. It can vary from point
to point on the substrate; thus θe = θe(x, y) for a heterogeneous substrate.
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The concept of disjoining pressure and how it determines θe was formulated
by Frumkin [7] and Deryaguin [5].

The last term on the right side of equation (1) or (2) is V , the evapo-
ration rate, with the dimensions of speed. Often the evaporation rate is an
additional unknown and needs to be calculated in terms of the local mixture
composition, as discussed below.

Irrespective of the choice of driving terms, for ‘slow’ flows where kinetic
energy is negligible, the evolution equation (1) or (2) is equivalent to an
energy equation of the form

Ėµ = − d

dt
Estored . (3)

Here Ėµ is the instantaneous rate of viscous energy dissipation. Estored is the
total system energy and includes integrated interfacial and other potential
energy components, corresponding to terms on the right side of (1) or (2).
There is also a principle that, in slow motion, the system will take the ‘path
of least resistance,’ subject to problem specific constraints. This is the cause
of a variety of ‘pattern forming instabilities.’ Figures 1–4 show frames from
simulations that illustrate the nonlinear evolution caused by instability. The
examples are relevant to industrial applications. We choose to use these
examples because experimental pictures are also available.

A ubiquitous phenomenon for liquid coatings is drying. Whereas the
physics and chemistry of drying are complicated, and incompletely under-
stood, progress can be made by constructing a simplified model. For exam-
ple, certain binary liquid mixtures have surface tension values that vary with
the fractional composition. A commonplace example is an alkyd paint whose
surface tension increases as the solvent evaporates. Strong surface tension
gradient effects can arise for a thin, nonuniform coating layer of the mix-
ture. The gradient of surface tension ∇σ is equivalent to an applied shear
stress τ on the liquid free surface [10], as in equation (1) or (2). Often, there
is surprising behavior; an initial hump in the coating may turn into a local
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depression in the final dry coating.

The model can be extended to reproduce phenomena associated with
drying. A conservation equation for the non-evaporating ‘resin’ fraction c
is [14]

∂(ch)

∂t
= ∇ · (Dh∇c− cQ) . (4)

The two partial differential equations (1) or (2) and (4) are solved simultane-
ously for the layer thickness h and the resin fraction c. Additional relations
must be supplied that relate the viscosity µ, the diffusivity D, the surface
tension σ and the evaporation rate V of the solvent fraction. This simple
drying model postulates a known relation between evaporation rate and local
mixture composition. Admittedly, this is an oversimplification of the relevant
thermodynamics.

Invariably, the thickness of a liquid film or coating is much smaller than
characteristic lengths in the filmwise direction. Thus an important simplifi-
cation that has been exploited above is to assume that the coating properties
are constant across the thin dimension. This is plausible because the coating
layer is very thin and diffusional mixing of the mixture components across
this small distance can be expected to happen more rapidly than changes
along the film. This well mixed assumption has previously been used in two
dimensional flow models by us and others [14]. Not all coating mixtures are
adequately handled by this model. Coatings that develop a significant skin
above a fluid underlayer as they dry require use of a more complicated model
than that presented here.

Equations (1) or (2) and (4) are solved simultaneously by finite difference
methods. Typically, we solve the system on a rectangular grid; the moving
contact lines are ‘captured’ rather than ‘tracked.’ That is, the evolution
equations are solved over the entire computational domain including the
nominally dry areas. Contact lines appear where finite thickness regions
meet the h ≈ h∗ slip layer. Alternating direction implicit methods work well
for these ‘heat like’ problems [12].
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Figure 1: Breakup and evaporation of an originally continuous, liquid film
on a waxy substrate. Experimental micrographs and frames from a simu-
lation are shown at two times. The detailed patterning is caused by a few
easily observed substrate defects, such as label ‘D’ in the micrograph. La-
bel ‘B’ in both the micrograph and the simulation shows a thin filament that
is about to break. Filament breakage leaves small residual drops, as seen in
the lower pictures. The pattern has become almost immobile due to drying
in the lower pictures.
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3 Some applications of the model

Figure 1 shows the breakup of an originally continuous liquid film, similar to
the ‘balling up’ of a water film on a waxed car. Experimental micrographs
and simulation are shown [14]. The coating de-wets on a heated plate and
leaves behind a waxy residue. Here the relevant physics includes evaporation
and finite contact angle effects using a given spatially dependent variation in
the prefactor B in the expression for the disjoining pressure Π. The coupled
system (1) or (2) and (4) is used in the simulation. Note the strong qualitative
agreement between simulation and observation. Although dewetting patterns
often seem to be random, in this experiment the detailed patterning is caused
by a few easily observed substrate defects. The locations of the observed
defects were used as nucleation sites or ‘seeds’ to start the simulation. The
seed locations were modeled as spots of larger contact angle θe. The initial
rate of dewetting is proportional to the value of B on the defects. In order to
match the time scale in the experiment, the B value on the defects was taken
to be 15 percent larger than the value on the surrounding field. All other
physical input parameters in the mathematical model used experimentally
measured values.

Subsequent breakup is largely deterministic and significant similarity be-
tween observation and prediction is seen. Isolated small droplets, resulting
from the snapping of thin liquid filaments, are larger in the simulation than
in the experiment. This is a coarse grid effect and would be lessened if the
calculation had used a finer mesh.

Figure 2 gives a comparison of simulation results for spin coating (left)
with experimental pictures (right). Spin coating is used in the electronics in-
dustry to produce very uniform thin films. Both simulation and experiment
show the development of the characteristic ‘wall and tower’ structure [15].
The center of rotation is near the lower right corner for each picture. The
interval between frames is about 0.1 second. Only one-quarter of an assumed
four-fold symmetric pattern is calculated in the simulation. The experiment
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Figure 2: A comparison of simulation results for spincoating (left) with
experiment (right). Both show the development of the characteristic ‘wall
and tower’ structure. The center of rotation is near the lower right corner
for each picture. The interval between frames is about 0.1 second. Only
one-quarter of an assumed four-fold symmetric pattern is calculated in the
simulation.
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was performed by Dr Jeroen Lammers and colleagues of the Philips Re-
search Laboratory in The Netherlands [8]. The calculation was performed in
a rotating coordinate system while the experiment used the equivalent of a
strobe light to remove the rotational component of frontal motion. Experi-
mentally, the coating thickness field was measured by light absorption. The
‘towers’ have been driven outward by centrifugal force, resulting in a pat-
tern of ‘fingers.’ Since complete wetting of the substrate is usually required
in applications, such fingering needs to be avoided. The simulation used a
contact angle value of 4.7 degrees while the experimentally measured value
was ‘about 4 degrees.’ Drying effects are ignored since the spin process is
relatively rapid.

Surface tension is usually a decreasing function of temperature; thus a
thermal gradient on a substrate will produce a surface tension gradient that
is equivalent, approximately, to an applied surface shear stress. Experiments
have been performed on a vertical metal plate that is partially submerged
in a liquid bath. By cooling the top end of the plate, the resulting shear
stress causes a thin film of liquid to climb up the plate. The moving front of
the rising film is unstable and results in fingers as shown in Figure 3. The
interferometric pictures are from Cazabat et al. [4]. The model calculations
are from Eres et al. [6].

Figure 4 shows the fate of a draining drop on a window pane. Note the
complicated breakup pattern [15]. It may be compared with an experimental
picture on the far right [13]. Interestingly, these apparently complicated
patterns are really highly structured. Starting from rest, as a static sessile
drop at the equilibrium contact angle θe, the calculated pattern exhibits
several different length scales. Only gravity, surface tension, and constant θe
disjoining pressure are used in the simulation. The simplified theory yields
a single control parameter

Gp =
2ρg

σ

(
4V

π

)2/3
1

θ
5/3
e

, (5)

where V is the drop volume [16]. Thus, within this theory, all rain drops of



4 About dynamic contact angles C78

a given volume must have an identical history, as in the figure. Since θe is
constant, this history is only correct for an ideally clean window pane. A
dirty window pane can be modeled using spots of contamination. This is
easily introduced into the simulation and will give other patterns, of course.

4 About dynamic contact angles

We believe it is remarkable that such a relatively simple theory can predict
a wide variety of complicated results. Thus, according to ‘Occam’s Razor’,1

this model should be preferred. Conversely, some workers introduce an ad-
ditional equation, ab initio [3, 17]; the algorithm is of the form

U = f(θd; θe) , (6)

where U is the local normal speed at the wetting line and θd is the dynamic
contact angle. While it is usually true that θd > θe when U > 0 and θd < θe
when U < 0 , no such local relationship should be a postulate of a physical
model of wetting, for a variety of reasons:

1. Consider two forced spreading processes: spin coating driven by cen-
trifugal force and metered gravitational flow of a uniform coating layer
onto an inclined wall. In either case, the speed of frontal advance is es-
sentially determined by forces that are remote from the moving front,
for example drop volume and spin speed in the first case, and volu-
metric flow rate and gravity in the second. Equation (6) can be made
dimensionally correct only by specifying length and time scales. These
scales will depend on the remote driving mechanisms which are quite
different in the two cases.

1Mediaeval philosopher William of Occam stated that ‘one should not increase, beyond
what is necessary, the number of entities required to explain anything.’
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Figure 3: Thermal gradient causes fingering rise on a vertical metal plate
in a liquid bath. Simulation results are shown on top at four times and the
corresponding interferometric pictures are on the bottom.
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Figure 4: A draining drop on a window pane showing the complicated
breakup pattern. Eight frames from a simulation are shown at eight different
times. An experimental picture is on the far right for comparison. Note that,
for the simulation pictures, the frames have been transposed upward as time
proceeds.
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2. The equations of fluid mechanics that govern the slow motion of coating
liquids are elliptic in character. Thus the dynamic angle at any point
will be influenced by motions, boundaries, etcetera that are remote
from that point.

3. Even the static contact angle requires careful definition. The equilib-
rium contact angle θe must be determined from, say, a sessile axisym-
metric droplet on a uniform horizontal substrate. Equation (6) implies
that the static angle must be unique if the droplet is not moving. This
is not true for a droplet that is held stationary on a dirty or cracked
window. The minimum energy configuration will thus have many con-
tact angle values on the same substrate.
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