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Investigation of the forced Bonhoeffer van der
Pol equations via continuation and other

methods
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Abstract

Previous work used bifurcation diagrams and Lyapunov exponents
to explore the dynamics of the forced Bonhoeffer van der Pol equation.
Here we use continuation methods to clarify the bifurcations of the
periodic orbits which had previously been ambiguous. We discuss the
use of numerical methods including Galerkin and the recent 0-1 test
for chaos.
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1 Introduction

Here we explore the dynamics of the forced Bonhoeffer van der Pol (bvp)
equations

dx

dt
= c(x+ y − x3/3− A cosωt) , (1)

dy

dt
=
−1

c
(x+ by − a) . (2)

The control parameters of the system are a, b, c > 0 , ω and A. Typically
a, b, c and ω are held constant and A is varied between 0 and 1. These
equations are a simplified version of the four variable Hodgkin Huxley (hh)
equations [6]. The hh equations are a description of how nerve impulses
travel down the axon of a squid nerve cell. Through careful experiments it
was determined that one can model the nerve impulses via ion concentrations,
the opening and closing of ion channels in the cell membrane and the mem-
brane capacitance [11]. Hodgkin and Huxley [11] discovered that the sodium
and potassium ion currents (sodium and potassium being the primary com-
ponents of membrane currents) are regulated separately by individual ion
channels.

A simplified two variable version of the hh equations is known as the
Fitzhugh–Nagumo (fn) equations [6]. These equations are closely related to
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the bvp equations (1)–(2). Fitzhugh [6] referred to the fn equations as the
Bonhoeffer van der Pol model. Fitzhugh [6] constructed the following model

dx

dt
= c(x+ y − x3/3− z) ,

dy

dt
= −1

c
(x+ by − a) ,

where
1− 2b/3 < a < 1 , 0 < b < 1 and b < c2 .

Fitzhugh [6] described z as the stimulus intensity corresponding to the
membrane current I from the hh equations. Although Fitzhugh’s article de-
scribes z as an arbitrary function of time, it was only ever used as a constant
(albeit a constant held at different values for different experiments). In the
forced bvp system, equations (1)–(2), a sinusoidal forcing term A cosωt, is
used as the stimulus intensity. We think of this as the nerve membrane sub-
jected to a periodic external stimulus [1]. Probing biological systems with an
application of sinusoidal stimulation and comparing experimental data with
that of physiological models is one way to better understand the underlying
physiological processes [10].

Although equations (1)–(2) are a reduced model, an approximate map-
ping into the hh model is possible. The fast x variable represents the mem-
brane potential and the slow y variable represents the recovery variable or
the potassium conductance [3].

Previous studies of the dynamical behaviour of the forced system (1)–(2),
such as Barnes and Grimshaw [1] and references contained therein, primar-
ily used bifurcation diagrams and Lyapunov exponents. However, Croisier
and Dauby [4] used continuation of periodic solutions of a system similar
to (1)–(2) but with different forcing. It is remarkable how much of the sys-
tem’s dynamics is discernible through application of these tools, combined
with a good understanding of nonlinear dynamical systems [1]. As powerful
as these techniques are, in some circumstances they are unable to resolve all
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the dynamics of the system. We employ continuation of periodic orbits to re-
solve these issues. There are several algorithms commonly used to determine
periodic solutions of nonlinear dynamical systems, including Galerkin [17],
shooting [13] and collocation [5] methods. Often these are used in conjunc-
tion with continuation methods to map out a path of periodic solutions as a
parameter is varied.

Here we use a Fourier–Galerkin method where we represent the solution
of a system of differential equations (des) ẋ = f(x, t), (such that f(x, t) =
f(x, t+ 2π)), as a truncated Fourier expansion, the coefficients of which are
to be determined. We rewrite the right hand side of the des as a Fourier
expansion and on discretising the integrals in the Fourier expansion we arrive
at a set of algebraic equation in terms of the unknown coefficients, which are
solved via Newton–Raphson method [17].

The methods discussed above are essentially numerical; however, there
are also analytical methods, such as perturbation, averaging and harmonic
balance. Although not treated in this article, for completeness we shall briefly
discuss these analytic methods. The perturbation approach works well when
the system is weakly nonlinear. In this case begin with a ‘nearby’ linear so-
lution and successively improve the approximation with any of a number of
perturbation techniques. An alternative is to apply a singular perturbation
approach similar to Guckenheimer et al. [9], where the dynamics are approx-
imated on the fast and slow manifolds. These methods applied to the bvp
system will be investigated in future work. The harmonic balance method
has the virtue that it does not require weak nonlinearity, it merely assumes
that the solution can be well represented by a harmonic sequence [12].

The system (1)–(2) is known to exhibit chaotic motion. Recently Gottwald
and Melbourne [7] developed a technique for detecting chaotic dynamics.
This technique applies as easily to experimental data as it does to data gen-
erated from integrating known equations. This is a novel approach which
exploits ergodic properties of the chaotic attractor [14]. We will apply this
technique to the forced bvp system (1)–(2) and compare these results with
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those obtained via Lyapunov exponents, verifying the utility of the method.

2 Earlier study

As outlined in the work of Barnes and Grimshaw [1] the bifurcation diagram
is a useful way to obtain an overview of a system’s dynamics, especially of
forced systems. Barnes and Grimshaw [1] demonstrate that the system (1)–
(2) is capable of a rich array of dynamics including periodic, quasi-periodic,
mode locking phenomena and chaotic behaviour, for 0 < A < 1 .

However, the analysis of Barnes and Grimshaw [1] was limited without
performing the continuation of periodic solutions. A case in point is the over-
lapping solutions with period 4π and 6π solutions for 0.39 < A < 0.41 as seen
in Figure 1. Barnes and Grimshaw [1] described this as a blue sky catastro-
phe where the system instantaneously jumps from one periodic attractor to
another as the parameter A is varied. By merely referring to the bifurcation
diagrams it is a difficult task to fully understand what is happening at these
locations, hence the need for further investigation via periodic continuation
and bifurcation analysis using Floquet theory.

Following the work of Ben-Tal et al. [2] we used arc length continuation
and test the stability of solutions using Floquet theory [15].

2.1 Bifurcation analysis

For brevity we only illustrate the use of continuation methods to the pe-
riod 4π case in detail. However, we used similar tools to uncover the full
behaviour of other periodic solution branches which were unclear from the
analysis of Barnes and Grimshaw [1].
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Figure 1: Bifurcation diagram of bvp equations (1)–(2) sampled every
t = 0 mod π with a = 0.7 , b = 0.8 , c = 3 , and ω = 2 . To produce
this figure, the equations were integrated sufficiently long to eliminate the
transient behaviour, the x coordinate was sampled every π units of time.
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Figure 2: Continuation of 4π periodic solution via Galerkin method. Stable
periodic solutions are represented as a solid blue line and unstable periodic
solutions are represented as a dashed red line. Period doubling bifurcations
(PD) and fold bifurcations (FLD) are also shown. The parameters used were
the same as those used in Figure 1.
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Recall that overlapping period 4π and 6π solutions are observed in Fig-
ure 1. Due to the nature of the bifurcation diagram’s construction it only
displays stable solutions, therefore we have an incomplete understanding of
the dynamics. To obtain the full dynamics of the solution branch, we also
need to track the unstable branch and determine the type of bifurcations that
occur. In Figure 2 we have a complete description of the period 4π solution
and its local bifurcations.

The eigenvalues of the monodromy matrix were determined at each com-
puted point of the solution curve. This identifies any local bifurcations.
Floquet theory states that an eigenvalue beyond the unit circle indicates an
unstable solution and if all eigenvalues are within the unit circle the solution
is termed stable [15]. Moreover, we can identify the type of local bifurcation
by the way an eigenvalues leaves the unit circle. If an eigenvalue leaves via −1
it denotes a period doubling bifurcation, if it passes through +1 it represents
a fold or symmetry breaking bifurcation and if a pair of eigenvalues leave the
unit circle as complex conjugates then a secondary Hopf bifurcation occurs.
The period 4π branch has period doubling bifurcations at A = 0.435 , 0.404,
0.312 and 0.298. We also observe fold bifurcations at A = 0.435 and 0.298;
see Figure 2. We now have a full understanding of the dynamics of the pe-
riod 4π solution with the added advantage of knowing the locations of the
different bifurcations. By applying our suite of continuation methods we un-
cover the dynamics of periodic solutions which remained uncertain from the
study of Barnes and Grimshaw [1].

3 Characterising chaotic behaviour via the

0-1 test

Gottwald and Melbourne [7] recently introduced a test for chaos known as
the 0-1 test. Rather than trying to characterise the rate at which solutions to
a dynamical system diverge, as in the computation of Lyapunov exponents,
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they exploit an ergodic property of chaotic attractors. The main advantage of
this method is that it circumvents the need for phase space reconstruction.
For data derived experimentally we do not, necessarily, have direct access
to the dynamical equations, in such cases traditional methods attempt to
estimate the Lyapunov exponents via the embedding theory of Takens [16];
see also the work of Gottwald and Melbourne [7] for additional references.
However, for the 0-1 test, all that is required is an ‘observable’ from the
dynamics sampled at equal times, almost any reasonable function of the
state of the system will do. This makes the 0-1 test an especially easy test to
use. The test determines if a variable (to be defined later as p(n)), derived
from the time series data, resembles Brownian motion.

The 0-1 test uses the observable to drive the dynamics on a well chosen
group extension, and then exploits a theorem from Nicol et al. [14] that
states that the dynamics on the group extension is bounded if the underlying
dynamics is non-chaotic, but is unbounded and sub-linear if the dynamics is
chaotic. In particular, p(n) exhibits Brownian motion (asymptotically) when
the underlying dynamics is chaotic [14].

Using a modified version of the original test, as modified by Gottwald and
Melbourne [8], let φ(n) be an observable on our set of N data points (obtained
from integrating des, pdes or from experimental data) and randomly choose
a $ ∈ R , any random number in (0, 2π) is sufficient. If p(n) is defined by

p(n) =
n∑

j=1

φ(j) cos(j$), n = 1, 2, 3, . . . , N ,

then p(n) will exhibit Brownian motion as a function of n when the dynamics
are chaotic. For Brownian motion we expect the average of |p(j + n)− p(j)|
to grow like

√
n for j = 1, 2, 3, . . . . Therefore, the square of |p(j + n)− p(j)|

should asymptotically approach linear growth with n for sufficiently large N .
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Gottwald and Melbourne [8] define the mean-square displacement

M(n) =
1

N − n

N−n∑
j=1

[p(j + n)− p(j)]2, n = 1, 2, 3, . . . .

Provided n � N we expect M(n) to scale linearly and is characterised
via the computation of

K = lim
n→∞

logM(n)

log n
.

K = 0 indicates a non-chaotic data set while a value of K = 1 indicates a
chaotic data set, hence the name ‘0-1’ test. In practice we compute the slope
of a linear regression of logM(n) against log n.

Figures 3a (0-1 test) and 3b (Lyapunov spectrum) show near perfect cor-
relation between the 0-1 test and the Lyapunov exponent test for forcing
amplitudes A > 0.13 . However, for A < 0.13 there is an example of a phe-
nomenon discussed by Gottwald and Melbourne [8] where the frequency of
the underlying dynamics (quasi-periodic in this case) is commensurate with
the choice of frequency $, resulting in extreme values. These extreme values
occur in Figure 3a for forcing between 0.1 and 0.13, there is also a signifi-
cant peak between 0 and 0.05. For forcing amplitude between 0.19 and 0.21
Figure 3a displays extreme values, where the Lyapunov exponent in 3b sug-
gests quasi-period motion. Figure 3c confirms that forcing between 0.19
and 0.21 is non-chaotic. In these cases we have p(n) = a0 ∗ n + · · · which
is understood from the Fourier decomposition of φ(j). When φ(j) is mul-
tiplied by cos($j) the Fourier decomposition will have a term like a0 for
all j, as e+ij$ × e−ij$ = 1 (personal communication, Gottwald). Therefore
|p(j + n) − p(j)|2 ∼ |a0 × (j + n) − a0 × (j)|2 = a2

0n
2. Consequently, the

mean square displacement will have quadratic growth, resulting in a value
of K = 2 . However, unless the frequencies are exactly commensurate longer
time series will eventually result in a value of K = 0 , although the conver-
gence may be very slow.
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Figure 3: Comparison of the 0-1 test (a) and (c) with the Lyapunov Spectrum (b).
Only one fixed value of $ was used in the computation of the 0-1 test in (a), whereas
100 random values of $ were used in (c). This highlights the resonances described in the
work of Gottwald and Melbourne [8], and hence the need to use multiple $. We know
from Barnes and Grimshaw [1] that the dynamics between 0 < A < 0.13 is quasi-periodic
and hence likely to produce resonances. System parameters are a = 0 , b = 0.8 , c = 3 ,
ω = 1.5 . The observable, φ, used for the above computations was φ(j) = x(j) +y(j). The
time series was 10000 points, sampled every 2.72 units of time, with an initial transient of
15000 units of time, integrated before the time series was recorded.
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The computation of K illustrated in Figure 3a used only a single fixed
value of $ at each sampled forcing amplitude. To overcome the slow conver-
gence Gottwald and Melbourne [8] took multiple random $ and computed K
for each $ and took the median of the resulting set of Ks. The median is
preferred over the mean so that the occasional extreme value does not skew
the results.

Figure 3c illustrates the same numerical experiment as Figure 3a ex-
cept that now 100 random values of $ are taken and the median extracted,
for each sampled forcing amplitude (Gottwald and Melbourne [8] suggest
100 randomly chosen $ should be sufficient). Figure 3c shows that there is
now complete agreement with the Lyapunov exponents in Figure 3b. Tak-
ing the multiple values of $ eliminates the effects of the resonances on the
computation of the 0-1 test, for the case of quasi-periodic motion.

This example illustrates another advantage of the 0-1 test over the Lya-
punov test in that for quasi-periodic motion the Lyapunov exponent hovers
above and below the horizontal axis leading to uncertainty in the type of dy-
namics, whether weakly chaotic or non-chaotic. However, the 0-1 test, when
multiple $ are taken, clearly distinguishes between chaotic and non-chaotic
dynamics. If there is any remaining uncertainty as to the status of a param-
eter point, increasing the number of solution points will drive K to 0 or 1,
thereby removing the uncertainty. Although we are able to do the same for
the Lyapunov exponent approach, increasing the time of integration, the end
result may still remain ambiguous. Nevertheless, near the forcing amplitude
of 0.19 to 0.21 there may be a question as to the status of the dynamics. The
slightly elevated value of K in Figure 3c in this parameter range may cause
concern. However, this is resolved by taking larger number of data points. As
an illustration, let us take the parameter value at 0.195, which was slightly
elevated, and used a larger number of data points for the computation of K.
At 10, 000 points we had a value of 0.1266, at 20, 000 points a value of 0.066
and at 30, 000 points we had a value of 0.022. It seems clear that the value
of K is converging to 0 as the number of points gets large. Therefore the
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dynamics at this point is non-chaotic, suggesting quasi-periodicity.

4 Conclusion

By utilising continuation and Floquet methods we have extended the analysis
of the the bvp system studied in the work of Barnes and Grimshaw [1], thus
providing a better understanding of the system’s dynamics. In particular we
are able to explain the type of bifurcations that occur at critical points and
track unstable solutions. This information is difficult to attain using only
bifurcation diagrams. We also verified that the 0-1 test for chaos accurately
determines when the bvp system exhibits chaotic dynamics. Even the more
challenging case of quasi-periodic motion is well handled using this test with
minor modification. We feel that the 0-1 test offers a number of advantages
over the Lyapunov exponent test including its ease of use, and its ability to
distinguish clearly between chaotic and non-chaotic dynamics.
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