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Entry effects in the narrow, gas lubricated,
step slider bearing
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Abstract

Singular perturbation methods are applied to an analysis of the op-
eration of an isothermal gas, step slider bearing of narrow geometry
and operating at moderate bearing numbers, when the step disconti-
nuity is located very close to the bearing’s leading edge. Approximate
expressions are obtained for the pressure field in the lubricating gap
and the influence of the nature of the bearing step on this is investi-
gated. These provide a convenient explicit means for examining the
performance characteristics of the bearing.
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1 Introduction

In analyzing the isothermal operation of a gas lubricated, slider bearing, we
seek the structure of the pressure field within the bearing, which directly
influences its load bearing properties. The nonlinearity of the equations
modelling the bearing action usually means that numerical methods must be
used. However, in circumstances where a small parameter may be identified,
perturbation techniques obtain closed form approximations to the pressure
and associated quantities. This was the approach adopted by Shepherd and
DiPrima [7], where narrow bearing geometry provided an appropriate small
parameter. Such geometries are seen in the modelling of the operation of
the flying head reader in a computer disc memory by Mitsuya et al. [1,
2]. Subsequent work by Penesis et al. [3, 4, 5, 6] applied this approach
to narrow bearings of varying geometries, in particular those displaying a
step discontinuity in the bearing gap profile [6]. In all these studies, any
discontinuity was located interior to the bearing and well clear of the leading
and trailing bearing edges. However, the geometries investigated by Mitsuya
et al. [1, 2] locate a discontinuity very close to the leading edge. Thus, in the
present article we use the approach of Penesis et al. [3, 4, 5, 6] to analyze
the operation of a narrow bearing with a step discontinuity very close to the
bearing gap entry.



2 Governing equations C260

Y = H(X)

Z

X

Y

X = x0B

U0

Figure 1: Geometry for the narrow gas step slider bearing.

2 Governing equations

The geometry of the step slider bearing considered here (of length L and
breadth B) is displayed in Figure 1. The lower surface (the XZ plane here)
moves with constant speed U0 in the positive X-direction, while the (sta-
tionary) upper surface represented by Y = H(X) has a single finite trans-
verse jump discontinuity along the line X = x0B , for some dimensionless
0 < x0 < 1 . Note that this bearing profile is a wedge; that is, it is indepen-
dent of Z, analogous to that of earlier work by Penesis et al. [6].
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For the above wedge step, the discontinuous upper planar surface is

H(X) =

{
H0, 0 ≤ X ≤ x0B ,
H1, x0B ≤ X ≤ L ,

(1)

for −B/2 ≤ Z ≤ B/2 where H0, H1, x0 are positive constants, and with
0 < x0 < 1 . Note that x0 is dimensionless. Defining x, z and h to be
dimensionless versions of X, Z and H scaled against length L, breadth B
and H0 respectively, (1) becomes

h(x, z) =

{
1, 0 ≤ x ≤ εx0 ,
β, εx0 ≤ x ≤ 1 ,

(2)

where ε = B/L is the breadth parameter, and β = H1/H0 . Thus, narrow
bearings are characterized by small values of ε.

For the case of isothermal flow, the pressure in the bearing gap may be
shown to be a solution of the non-linear Reynolds equation [8, 9] which is,
in dimensionless form,

ε2
∂

∂x

(
h3p

∂p

∂x

)
+

∂

∂z

(
h3p

∂p

∂z

)
= ε2Λ

∂

∂x
(ph) , (3)

where x, z and h are as above, and p is the dimensionless pressure, scaled
against the (constant) ambient pressure, Pa. The dimensionless parameter
Λ = 6µU0L/PaH

2
0 , is the bearing number, with µ the viscosity of the gas

lubricant. Note that Λ is proportional to U0, the bearing speed. Note also
that (3) does not involve a variable corresponding to Y , so the pressure is
independent of this variable. This arises from the assumption that the gap
between the bearing surfaces is very small relative to the overall bearing
dimensions [8, 9].

Technically, the pressure p in (3) depends on all of x, z , Λ and ε. However,
since we here apply a perturbation analysis based on ε→ 0 (a narrow bearing)
operating at moderate speeds (Λ fixed with Λ = O(1)), we will not display
this Λ-dependence explicitly, and simply write the pressure p as p(x, z, ε).
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The differential equation (3) holds on 0 ≤ x ≤ 1 , −1/2 ≤ z ≤ 1/2 , while
the condition that the pressure attains the ambient value at the bearing edges
becomes

p(x,±1/2, ε) = p(0, z, ε) = p(1, z, ε) = 1 . (4)

We view the bearing surface as consisting of the union of two smooth
bearing surfaces defined on the separate domains

0 ≤ x ≤ εx0 , −1/2 ≤ z ≤ 1/2 and εx0 ≤ x ≤ 1 , −1/2 ≤ z ≤ 1/2 ,

and apply basic techniques [7] separately to these smooth sub-domains. This
requires solving (3) subject to appropriate boundary conditions at the edges
of these sub-domains. While (4) holds at the exterior boundary of both re-
gions, further conditions along the common boundary at x = x0ε are required.
Continuity of p(x, z, ε) there is written as

p(εx0−, z, ε) = p(εx0+, z, ε) = λ(z, ε), (5)

for all ε > 0 , −1/2 ≤ z ≤ 1/2 , where λ(z, ε) is a function to be determined.
A further condition arises from the requirement that the mass flow across
x = x0ε be continuous, and becomes

h3(x)
∂p

∂x
− Λh(x)

∣∣∣∣
x=εx0−

= h3(x)
∂p

∂x
− Λh(x)

∣∣∣∣
x=εx0+

. (6)

Thus, on the first domain, this pressure p(x, z, ε) is assumed to satisfy (3),
together with

p(x,±1/2, ε) = 1 , 0 ≤ x ≤ εx0 , (7)

p(0, z, ε) = 1
p(x0ε, z, ε) = λ(z, ε)

}
− 1/2 ≤ z ≤ 1/2 ; (8)

while on the second it satisfies (3), plus

p(x,±1/2, ε) = 1 , εx0 ≤ x ≤ 1 , (9)
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p(x0ε, z, ε) = λ(z, ε)
p(1, z, ε) = 1

}
− 1/2 ≤ z ≤ 1/2 . (10)

In the following Section, we apply perturbation methods based on ε→ 0
to obtain representations for the pressure field in the leading and trailing
sections of the bearing; and then, by applying the juncture conditions (5)
and (6), construct the function λ(z, ε).

Compare the present case to that of Penesis et al. [5]. There, the discon-
tinuity was located at x = x0 , where 0 < x0 < 1 , and x0 was independent
of ε. The subsequent analysis showed that the pressure displayed regions of
rapid change (layers) of thickness O(ε) adjacent to the leading and trailing
edges x = 0, 1 and on both sides of the discontinuity x = x0 . Away from
the layers, the pressure varied relatively slowly. In the special case of the
Rayleigh step (where h is constant in the leading and trailing regions), the
layers at x = 0, 1 vanished, and layers only occurred at the discontinuity;
while the pressure away from x = x0 took on the ambient value p = 1 .

In the present case, the leading bearing section is of length O(ε). We
regard this as lying entirely within the layer region adjacent to x = 0 . Thus,
all variation of h (including the discontinuity at x = εx0) lies within the
leading layer. Away from this layer, h = β , a constant, so by analogy with
the Rayleigh step (see above), we expect p ≡ 1 throughout this region.

Thus, the solution away from the boundary layer at x = 0 is

p(x, z, ε) = p0(x, z) ≡ 1 , (11)

and is valid even into the layer region.

3 Perturbation analysis

To analyze the pressure in the leading edge layer incorporating 0 ≤ x ≤ εx0 ,
we introduce the local variable ξ, defined by x = εξ where ξ = O(1) as ε→ 0 .
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Making a change in variable p(εx, z, ε) ≡ P (ξ, z, ε) , our governing differential
equation (3) becomes

∂

∂ξ

(
h3P

∂P

∂ξ

)
+

∂

∂z

(
h3P

∂P

∂z

)
= εΛ

∂

∂ξ
(Ph) . (12)

From (11), p0(x, z) ≡ 1 away from the layer region, hence we seek a boundary
layer expansion in the region 0 ≤ x ≤ εx0 of the form

P (ξ, z, ε) = 1 + εP1(ξ, z) + ε2P2(ξ, z) + · · · . (13)

Since λ(z, ε) = P (x0, z, ε) , (13) must converge to this value. We thus propose

λ(z, ε) = 1 + ελ1(z) + ε2λ2(z) + · · · , (14)

where λ1(z), λ2(z), . . . are to be determined.

Substituting expressions (2), (13) and (14) into (12) and equating like
powers of ε gives the differential equation for P1 as

∂

∂ξ

(
∂P1

∂ξ

)
+

∂

∂z

(
∂P1

∂z

)
= 0 , (15)

to be solved subject to the boundary conditions

P1(0, z) = 0 , P1(x0, z) = λ1(z) , P1(ξ,±1/2) = 0 . (16)

This gives

P1(ξ, z) =
∞∑
n=1

cnφn(z) sinhnπξ , −1/2 < z < 1/2 , ξ ≥ 0 , (17)

where

φn(z) =

{
cos(nπz) , n = 1, 3, 5, . . . ,
sin(nπz) , n = 2, 4, 6, . . . ,

(18)
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and

cn =
1

sinhnπx0

∫ 1/2

−1/2

λ1(z)φn(z) dz , n = 1, 2, 3, . . . . (19)

Hence, the uniform expansion for the pressure takes the form

p(x, z, ε) = 1 + εP1(ξ, z) +O(ε2) (20)

on the domain 0 ≤ x ≤ εx0 , −1/2 ≤ z ≤ 1/2 .

Consider now the region x ≥ εx0 that lies within the O(ε) layer at x = 0 .
Assuming the same local variable ξ (x = εξ where ξ = O(1) as ε → 0) and
making a change in variable p(εξ, z, ε) ≡ P̃ (ξ, z, ε) , our governing differential
equation (3) becomes

∂

∂ξ

(
h3P̃

∂P̃

∂ξ

)
+

∂

∂z

(
h3P̃

∂P̃

∂z

)
= εΛ

∂

∂ξ

(
P̃ h
)
. (21)

We assume the boundary layer expansion for x ≥ εx0 takes the form

P̃ (ξ, z, ε) = 1 + εP̃1(ξ, z) + ε2P̃2(ξ, z) + · · · . (22)

Substituting expressions (2), (14) and (22) into (21) and equating like powers
of ε gives the boundary value problem for P̃1 as

∂

∂ξ

(
∂P̃1

∂ξ

)
+

∂

∂z

(
∂P̃1

∂z

)
= 0 , (23)

P̃1(x0, z) = λ1(z) , P̃1(∞, z) = 0 , P̃1(ξ,±1/2) = 0 . (24)

The second of (24) is a matching condition, arising from the requirement
that the expansion (22) should match the solution (11) as we exit the layer
at x = 0 , that is, as ξ →∞ .

The solution of the above boundary value problem is

P̃1(ξ, z) =
∞∑
n=1

dnφn(z)e−nπξ , −1/2 < z < 1/2 , ξ ≥ 0 , (25)
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where

dn = enπx0

∫ 1/2

−1/2

λ1(z)φn(z) dz , n = 1, 2, 3, . . . . (26)

and the φn(z) are as in (18).

Hence, the uniform pressure takes the form

p(x, z, ε) = 1 + εP̃1(ξ, z) +O(ε2) , (27)

on the region x ≥ εx0 and on to the ‘outer’ region where the pressure takes
the ambient value p ≡ 1 .

Expressions (20) and (27) with (17) for P1 and (25) for P̃1, provide a
straightforward procedure for calculating the pressure distribution in a step
slider bearing. However, to determine these quantities, λ1 needs to be found.

The pressure, (20) and (27) in the layer section of the bearing is continu-
ous at the step x = εx0 , taking the value λ1 there. To determine λ1, the mass
flow condition (6) is invoked. Substituting (20) and (27) into condition (6)
and equating like terms, we obtain

ε
∂P1

∂x

∣∣∣∣
x=εx0

− β3ε
∂P̃1

∂x

∣∣∣∣∣
x=εx0

= Λ(1− β) . (28)

On substituting for P1(ξ, z) and P̃1(ξ, z) and equating like powers of ε we
obtain

∞∑
n=1

nπφn(z)
(
cn coshnπx0 + dnβ

3e−nπx0
)

= Λ(1− β) . (29)

Consider now the expression (29). The right-hand side is a constant, hence
an even function in z; so that from the form of the eigenfunctions φn(z), we
deduce

cn = dn = 0 , n = 2, 4, 6, . . . . (30)



4 Discussion C267

For n = 1, 3, 5, . . . , (29) becomes

∞∑
n=1,3,5,...

nπ
[
sech(nπx0) + β3

]{∫ 1
2

− 1
2

λ1(z) cos(nπz) dz

}
cos(nπz) = Λ(1−β) ,

(31)
from which we obtain a Fourier representation for λ1(z) as

λ1(z) =
2Λ(1− β)

π2

∞∑
n=1,3,5,...

sin(nπ/2)

n2 [sech(nπx0) + β3]
cosnπz , (32)

giving the O(ε) term in the expansion (14) for λ(z, ε) .

Combining the findings of the previous section, we find that the pressure
distribution over the whole bearing domain 0 ≤ x ≤ 1 , −1/2 ≤ z ≤ 1/2 is
given approximately by

p(x, z, ε) = 1 +
εΛ(1− β)

π2

∞∑
m=0

Gmcosech((2m+ 1)πx0)×

× sinh((2m+ 1)πx/ε) cos((2m+ 1)πz) (33)

on 0 ≤ x ≤ εx0 , and

p(x, z, ε) = 1 +
εΛ(1− β)

π2

∞∑
m=0

Gme
(2m+1)π(x0−x/ε) cos[(2m+ 1)πz] , (34)

on εx0 ≤ x ≤ 1 where

Gm =
(−1)m

(2m+ 1)2 [sech((2m+ 1)πx0) + β3]
. (35)

4 Discussion

For a given step as described by (2), the expansions (33) and (34) define
an explicit and useful approximation to the pressure field throughout the
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Figure 2: Surface plot of non-dimensional pressure for the wedge step slider
bearing as given by asymptotic formulae (33) and (34) for the linear bearing
profile (36), with ε = 0.2 , Λ = 20 and x0 = 0.9 .

bearing, valid over an appropriate range of ε and Λ values. They show
that the pressure is within O(ε) of the ambient value for x = O(ε) , but
for x bounded away from zero as ε → 0 , the pressure is effectively the
ambient. This is as anticipated. Note also that when β = 1 , corresponding
to h(x) ≡ 1 , the pressure reduces to p = 1 everywhere, again as expected.

Figure 2 displays the (approximate) three dimensional pressure distribu-
tion as given by (33) and (34) for a simple Rayleigh bearing profile

h(x, z) =

{
1, 0 ≤ x ≤ 0.18 ,
0.4, 0.18 ≤ x ≤ 1 ,

(36)

for which x0 = 0.9 and ε = 0.2 . Figure 3 displays the pressure as given by
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Figure 3: One-dimensional plot of the pressure for the wedge step bearing
along z = 0 as given by asymptotic formulae (33) and (34) for the linear
bearing profile (36), with ε = 0.2 , Λ = 20 and x0 = 0.9 .
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(33) and (34), along the bearing midline z = 0 . In both cases, the layer at
the step x = x0ε = 0.18 is clearly in evidence, with the pressure rising rapidly
from ambient to about twice that value, then decaying equally rapidly back
to ambient. Note that the pressure, while continuous at x = 0.18 , shows
a slope discontinuity there, arising from the imposition of the mass flow
condition (6). These results agree, at least qualitatively, with those obtained
numerically by Mitsuya [1] for a comparable (but not identical) situation.
There, the pressure showed a steep entry layer, followed by slow variation
past the discontinuity point, arising from a non-constant bearing profile there.
While the analysis here could be adapted to deal with that situation, this is
beyond the scope of the present paper. Our results also show that the load
carrying capacity of the bearing (effectively the integral over the bearing of
the excess of pressure above the ambient) derives almost completely from
the region around the step discontinuity, causing the centre of pressure (the
areal moment of the excess pressure) to be located in this small entry region.
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