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Approximating the periodic solutions of the
Lotka–Volterra system
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Abstract

The two dimensional Poincaré–Lindstedt method is used to obtain
approximate solutions to the periodic solutions of the Lotka–Volterra
predator-prey system near the non-trivial critical point. These approx-
imations are then used to analyze the behaviour of these solutions and
provide a convenient way to describe general solution properties not
available from numerical computations.
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1 Introduction

The general Lotka–Volterra equations [2, 3, 6, e.g.] constitute the simplest
differential equation system for modelling the results of a two species interac-
tion in which one species is preyed upon by the other. While these equations
are too idealized to accurately model real-world communities, they do dis-
play some features that make them worthy of continued study. In particular,
these equations display periodic solutions (albeit structurally unstable ones,
in the sense that small logistic perturbations destroy the periodicity). While
this system is simple, it is not possible in general to obtain closed form ex-
act solutions (although an implicit solution may be found—see below), and
numerical solutions must be used.

This system has one non-trivial critical point (equilibrium), with the pe-
riodic solutions forming closed orbits encircling this point in the phase plane.
Close to the critical point, orbits are approximately ellipses, with distortion
increasing with distance from that point. This prompts analysis close to this
point by perturbation methods. While this has been done by Murty, Rao and
Willson [4, 9], the results are unnecessarily complicated and hard to visualize.
In a different approach, Rothe and Waldvogel [5, 7, 8] directed effort toward
calculation of the orbital period. Section 2 applies the Poincaré–Lindstedt
method [1] to obtain approximate expressions for the solutions to this sys-
tem near to the critical point. Their phase plane representation may then be
compared with the exact first integral (4). An important by-product of the
method is an approximation to the period.
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The general Lotka–Volterra system is

dX(T )

dT
= X(T ) (a− bY (T )) ,

dY (T )

dT
= Y (T ) (cX(T )− d) (1)

where a, b, c and d are positive constants. We nondimensionalise the system
by defining the following variables [3]

x(t) =
cX(T )

d
, y(t) =

bY (T )

a
, t = aT, α =

d

a
. (2)

Then the nondimensional Lotka–Volterra system becomes

dx(t)

dt
= x(t)− x(t)y(t) ,

dy(t)

dt
= −αy(t) + αx(t)y(t) . (3)

The system (3) may be solved to give a family of implicit solutions linking
x and y of the form

ln y − α lnx+ αx− y = constant ; (4)

but this reveals little of the separate behaviour of x and y as functions of t.

The nonzero critical point of this system occurs at x(t) = y(t) = 1 . In
order to analyze the behaviour of the system in the close neighbourhood of
this critical point (1, 1) we perturb the system near (1, 1), that is, we put

x(t) = 1 + εξ(t) , y(t) = 1 + εη(t) , (5)

where ε is small. Thus (5) becomes,

dξ(t)

dt
= −η(t)− εξ(t)η(t) ,

dη(t)

dt
= αξ(t) + εαξ(t)η(t) . (6)

We can see from (6) that if we ignore the non-linear terms (or put ε = 0) the
system has a solution which has a period of 2π/

√
α and a frequency of

√
α.
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2 Analysis using the Poincaré–Lindstedt

method

Since we expect our solutions of (6) to have a period of approximately 2π/
√
α

and a frequency of approximately
√
α, we introduce a new time scale

τ = ωt , (7)

where ω depends on ε; that is, ω = ω(ε) and ω(0) =
√
α . Thus, the

transformed solutions are 2π periodic in τ , since 0 ≤ t ≤ 2π/
√
α corresponds

to 0 ≤ τ ≤ 2π . With this new time scale the non-linear system (6) becomes

ω
dξ(τ)

dτ
= −η(τ)− εξ(τ)η(τ) , ω

dη(τ)

dτ
= αξ(τ) + εαξ(τ)η(τ) . (8)

Thus we seek solutions of the form

ξ(τ) = ξ0 + εξ1 + ε2ξ2 + · · · ,
η(τ) = η0 + εη1 + ε2η2 + · · · , (9)

ω =
√
α + εω1 + ε2ω2 + · · · ,

where ξi = ξi(τ) and ηi = ηi(τ) are 2π periodic in τ . Now substituting these
expansions into (8) and collecting like powers of ε we obtain a sequence of
differential equations. From the leading O(1) terms we get

√
α
dξ0
dτ

= −η0 ,
√
α
dη0

dτ
= αξ0 ; (10)

from the O(ε) terms,

ω1
dξ0
dτ

+
√
α
dξ1
dτ

= −η1 − ξ0η0 , ω1
dη0

dτ
+
√
α
dη1

dτ
= αξ1 + αξ0η0 ; (11)

and from the O(ε2) terms,

ω2
dξ0
dτ

+ ω1
dξ1
dτ

+
√
α
dξ2
dτ

= −η2 − ξ0η1 − ξ1η0 ,
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ω2
dη0

dτ
+ ω1

dη1

dτ
+
√
α
dη2

dτ
= αξ2 + αξ0η1 + αξ1η0 . (12)

The two dimensional linear system (10) has solutions

ξ0 = A cos(τ + φ) , η0 = A
√
α sin(τ + φ) (13)

where A and φ are arbitrary constants, which are found by the initial con-
ditions. On substituting the solutions (13) into (11) we obtain the following
differential equations

√
α
dξ1
dτ

+ η1 = ω1A sin(τ + φ)− A2
√
α

2
sin 2(τ + φ) ,

√
α
dη1

dτ
− αξ1 = −ω1A

√
α cos(τ + φ) +

A2α
√
α

2
sin 2(τ + φ) . (14)

At this point, we introduce the following simple result.

Lemma 1 For the system

dx

dt
+ y = A sin t+B cos t+ higher harmonics ,

dy

dt
− x = C sin t+D cos t+ higher harmonics ,

to have periodic solutions, it is necessary and sufficient that

A−D = 0 and B + C = 0 .

This may be easily proved by reducing this system to an equivalent single
second order equation and invoking the relationships between A,B,C,D re-
quired for a periodic solution.

Applying the lemma (suitably adapted with x =
√
α ξ1 , y = η1), we see

that the system (14) will have 2π periodic solutions only if we choose ω1 = 0 ,
giving

ξ1 =
A2
√
α

6
sin 2(τ + φ) +

A2

3
cos 2(τ + φ) ,
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η1 =
A2
√
α

6
sin 2(τ + φ)− A2α

3
cos 2(τ + φ) . (15)

Note that (15) is the particular solution of (14), arising from the higher har-
monics on the right-hand side of that system. No complementary solution
is included. Since the general solution of the original system (6) will in-
volve two arbitrary constants, we expect our approximate solution to reflect
this. The solution of (13) involves two such constants (A and φ), so we re-
press the appearance of arbitrary constants in later terms in the sequence
ξi(τ) and ηi(τ).

On substituting (15) into (12) and noting ω1 = 0 , we obtain

√
α
dξ2
dτ

+ η2 =

(
ω2A+

A3
√
α

12

)
sin(τ + φ) +

A3α

12
cos(τ + φ)

+
A3α

4
cos 3(τ + φ)− A3

√
α

4
sin 3(τ + φ) ,

√
α
dη2

dτ
− αξ2 = −A

3α
√
α

12
sin(τ + φ)−

(
ω2A
√
α +

A3α2

12

)
cos(τ + φ)

− A3α2

4
cos 3(τ + φ) +

A3α
√
α

4
sin 3(τ + φ) . (16)

Applying the Lemma to (16), we find that to ensure 2π periodic solutions
we must choose

ω2 = −A
2
√
α

24
− A2α

√
α

24
, (17)

and so we obtain the following particular solutions

ξ2 =
A3
√
α

12
sin(τ + φ) +

A3

24
(α− 1) cos(τ + φ) +

A3
√
α

8
sin 3(τ + φ)

+
A3

32
(3− α) cos 3(τ + φ) ,

η2 =
A3
√
α

32
(1− 3α) sin 3(τ + φ)− A3α

8
cos 3(τ + φ) . (18)
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A calculation analogous to the above but too long to include here gives
ω3 = 0 .

Thus three term approximations to x = 1 + εξ and y = 1 + εη , which
have a frequency of ω are

x = 1 + a cos(τ + φ) +
a2

3

[√
α

2
sin 2(τ + φ) + cos 2(τ + φ)

]
+
a3
√
α

12
sin(τ + φ) +

a3

24
(α− 1) cos(τ + φ) +

a3
√
α

8
sin 3(τ + φ)

+
a3

32
(3− α) cos 3(τ + φ) +O(a3) , (19)

y = 1 + a
√
α sin(τ + φ) +

a2
√
α

3

[
1

2
sin 2(τ + φ)−

√
α cos 2(τ + φ)

]
+ a3

[√
α

32
(1− 3α) sin 3(τ + φ)− α

8
cos 3(τ + φ) +O(a3)

]
, (20)

ω =
√
α− a2

√
α

24
(1 + α) +O(a4) , (21)

where a = εA may be viewed as the (small) amplitude of the variation
of (x, y) from (1, 1).

3 Results and discussion

Using the approximations (19), (20) and (21) we plot the approximate so-
lutions of x and y along with the implicit solution (4) for various initial
conditions. Figures 1–3 show the results for the values α = 0.2 , ε = 0.1 and
φ = 0 .

Figures 1–3 show that the orbits close to the critical point are virtually
elliptical, while as we move further from the critical point we find that the
solutions begin to take on more of the typical Lotka–Volterra orbit shape [3]
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Figure 1: Plot of implicit solution (black) and approximate solution (red
dash) using the initial condition x(0) = 1.08216 , y(0) = 0.99560 (corre-
sponding to a = 0.08).
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Figure 2: Plot of implicit solution (black) and approximate solution (red
dash) using the initial condition x(0) = 1.59010 , y(0) = 0.98021 (corre-
sponding to a = 0.5).
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Figure 3: Plot of implicit solution (black) and approximate solution (red
dash) using the initial condition x(0) = 2.20949 , y(0) = 0.92778 (corre-
sponding to a = 0.9).

that we expect. However, if we use an initial condition that is too far from the
critical point (or an amplitude, a, that is too large) then the orbits produced
by the approximation deviate from the exact solution. This is to be expected,
as the approximate solutions assume that the amplitude is small, so using a
large amplitude is forcing the approximation to evaluate something which is
outside of its realm of validity.

The plots of Figures 1–3 have been obtained from (19) and (20) by nom-
inating values for a and φ. In most cases, initial conditions are given in
cartesian form, that is, values x(0) and y(0) are nominated. In such a case,
the values for a and φ may be found by setting x = x(0) and y = y(0)
in (19) and (20) and solving implicitly for a and φ. This is most easily done
by solving using a package such as Maple and gives approximate values for
a and φ.

Figures 4–6 compare the approximations for x and y obtained from (19)
and (20) with numerical solutions of the Lotka–Volterra system for the vari-
ous orbits shown in Figures 1–3. The x approximation has a larger amplitude
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Figure 4: Plot of x (solid line) and y (dashed line) for both the implicit
(black) and approximate (red) solutions shown in Figure 1.



3 Results and discussion C253

10

1.0

0.75

t

6020

1.25

30 400

1.5

50

XY

Figure 5: Plot of x (solid line) and y (dashed line) for both the implicit
(black) and approximate (red) solutions shown in Figure 2.
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Figure 6: Plot of x (solid line) and y (dashed line) for both the implicit
(black) and approximate (red) solutions shown in Figure 3.
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than the y approximation in Figures 4–6, resulting in the elliptical orbits
shown in Figures 1–3. If we consider α > 1 then the elliptical orbits will
be vertical rather than the horizontal ones we obtained for α < 1 meaning
that the y approximation will have a larger amplitude than the x; however,
if α = 1 we obtain circular orbits.

The result (21) gives an approximation to the period T of these orbits as

T =
2π

ω
=

2π
√
α[1− a2

24
(1 + α) +O(a4)]

, (22)

giving a higher–order approximation to the period for small a. This result
also shows that T increases monotonically with a (for small a), in agreement
with the findings of Waldvogel [8].

4 Conclusion

The two dimensional Poincaré–Lindstedt method used here has proved to
be a successful tool in dealing with this nonlinear system, as it has in many
other applications [1] The truncated expansions (19) and (20) provide ex-
plicit, readily applicable approximations to the solutions x(t) and y(t) of
the Lotka–Volterra predator-prey system near the non-trivial critical point.
They compare well with numerically generated solutions in particular cases.
However, they are also applicable in a range of the system parameter val-
ues, giving information that is only available from numerics after numerous
recalculations—and then in a limited way. In particular, the approximation
to the period of the solutions (22) gives general information that is just not
available from numerical calculations.
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