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Temperature effects in the blown Newtonian
film
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Abstract

The film blowing process, by which thin polymer films are manu-
factured, is modelled by highly nonlinear differential equations. Typi-
cally, analysis of these using numerical techniques leads to instabilities.
Our earlier work used an iteration process to construct the film bub-
ble profile and some associated quantities for the simplest case of a
Newtonian film incorporating an axial temperature variation. Now we
extend this to an investigation of the effects of variations in temper-
ature parameters on the film radius, film fluid velocity, film thickness
and overall temperature profiles. This information is of considerable
use to investigators examining the film blowing process.
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1 Introduction

Film blowing is a well established industrial process employed in the man-
ufacture of thin polymer film used in a variety of commercial and domestic
applications.

A brief description of the process follows. Molten polymer is extruded
vertically up through a thin horizontal annular die at a constant exit veloc-
ity. The resulting polymer tube is drawn upwards, while an applied internal
pressure difference causes this tube to expand to an increased radius, forming
a polymer bubble. Cooling by external air jets causes this bubble to solid-
ify at the freezeline some distance above the extrusion point. The resulting
cooled polymer tube is then wound onto rollers as a flat double layered film.
Shepherd and Bennett [5] gave a schematic diagram of the apparatus in-
volved. The mathematical modelling when the blown film is an isothermal
Newtonian fluid is well established [4], while thermal effects in an analogous
situation were introduced by Luo and Tanner [2].

In appropriate circumstances, the radial expansion above occurs in a rel-
atively small part of the overall bubble region. This interior layer structure
was exploited by Shepherd and Bennett [5] (and earlier by Shepherd, Connell
and Tam [6]), where a singular perturbation constructed an analytic approxi-
mation to the radial film bubble profile for the simplest case of an isothermal



2 Non-dimensional governing equations C217

Newtonian film. Subsequent work extended this to include a temperature
variation along the film [1]; while a numerical process using the analytical
approximation as initial iterate yielded an improved approximation to the
bubble’s radial and thermal profiles. This iterative process, based as it was
on Maple’s internal two point boundary value problem solver was computa-
tionally expensive. In this article we improve the iterative solution procedure
by using a Galerkin finite element method. This numerical procedure is then
applied to investigate the effects of film temperature variation on the radius,
velocity and thickness of the film in the blowing process.

2 Non-dimensional governing equations

The bubble blowing process is assumed to display axial symmetry, with axis
of symmetry the line normal to the plane of the annular die and through its
centre. With z taken as a dimensionless co-ordinate along this axis, where
z = 0 coincides with the plane of the exit die, the process is completely
described by three dimensionless functions of z: the film radius r(z), film
velocity u(z) and film temperature s(z). Consideration of the equilibrium of
the forces acting on a film element and heat flow within that element then
lead to the governing set of nonlinear differential equations
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along with the boundary conditions,

r(0) = 1 , r′(1) = 0 , (4)

u(0) = 1 , s(0) = 1 . (5)
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Equations (1) and (2) result from stress balance on a film element in the
meridional (longitudinally, along the bubble) and hoop (circumferentially,
around the bubble) directions respectively. Derivations (in slightly different
notation) are given by Pearson and Petrie [3, 4], with thermal effects included
by Luo and Tanner [2]. The positive parameters B, C and f0 are dimension-
less forms of the internal air pressure difference across the film, aspect ratio
(radius of exit die to distance to freezeline) of the film bubble and pulling
force at the die exit, respectively. The second of (4) reflects the fact that the
freezeline occurs at z = 1 .

The properties of the film material enter into (1) and (2) through the
factor η, a dimensionless Newtonian viscosity displaying an Arrhenius tem-
perature variation, and defined by

η(z) = exp

[
w

(
1

s(z)
− 1

)]
. (6)

In this, w is a dimensionless form of the activation energy. Note that for the
isothermal case, η ≡ 1 (or w ≡ 0).

Equation (3) describes heat flow in the film element, with the second
term arising from Fourier law conduction and the third from radiation. The
thermal parameters H, J , and sa are the dimensionless overall heat transfer
coefficient, emissivity and ambient temperature respectively.

The non-dimensional bubble thickness e(z) is defined through mass con-
servation by

r(z)e(z)u(z) = 1 . (7)

Equation (2) is integrated using u(0) = 1 to obtain an integral expression
for u(z),

u(z) = r−1/2(z) exp

[∫ z
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Equation (7) is then rearranged to give

e(z) = r−1/2(z) exp

[
−
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]
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2.1 The analytical approximation

Shepherd and Bennett [5] used a combination of heuristic techniques and the
method of matched asymptotic expansions was used to construct a closed
form approximation for the bubble film radius in the case of the isothermal
Newtonian film. Explicitly, this is

ra(z, C) = r1(z, C) [H(z)−H(z − a)] + r2(z, C) [H(z − a)−H(z − 1)] ,
(10)

where H(z) is the Heaviside function, and
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and

ν(z, C) =
3 (z − 1)

Cσρ2
BU

. (15)

.

Here, ρBU the blow up ratio is the ratio of the bubble radius at the freeze-
line to the initial radius. The approximation (10) has the advantage of being
explicit, and shows encouraging consistency when compared with numerical
isothermal solutions [5]. It is useful as a starting point for an iterative scheme
to construct numerical solutions to the model with temperature variation, as
considered here.

3 Linearization and the iteration procedure

Equations (1) and (3) are coupled via the function η(z), so that Equations (1)
and (3) must be solved simultaneously. The procedure used here decouples
Equations (1) and (3) with a solution being found by a linearization process
leading to a series of ‘simpler’ differential equations, which are then solved
numerically to iterate towards a solution of the full problem. This is similar
to the approach of Bennett and Shepherd [1].

For given s, Equation (1) is written as

N [r] ≡ C2r′′ + f(r, r′, s, C) = 0 , (16)

where

f(r, r′, s, C) =
(3Br2 − f0 +B) r [1 + C2(r′)2]− 6Cηr′

2r2 [f0 +B (r2 − 1)]
, (17)

with s(z) appearing in (17) via η(z). If R(z) is some approximation to the
solution of (16), by writing

r(z) = R(z) + v(z) , (18)



3 Linearization and the iteration procedure C221

that equation is rearranged as

C2v′′ + fr′v
′ + frv = −N [R]−Q(v, v′, s, C), (19)

where fr′ and fr are the partial derivatives of f with respect to the indicated
variables evaluated at (R,R′, s, C) and

Q(v, v′, s, C) = f(R + v,R′ + v′, s, C)− f(R,R′, s, C)− vfr − v′fr′ , (20)

is quadratic in v.

The boundary conditions for v(z) then become, from (18)

v(0) = 1−R(0), v′(1) = −R′(1). (21)

If, for given s, R is a suitable approximation to r, v will be appropriately
small, and the system (19) and (21) may be solved iteratively as a linear
nonhomogeneous two point boundary value problem.

The iteration procedure used to obtain a solution is similar to that de-
scribed by Bennett and Shepherd [1]. Since the isothermal approxima-
tion (10) reflects the structure expected in the numerical solution (when
s = 1), R(z) = ra(z) is chosen here as a basis for an iteration process in (19).
Thus, the nonlinear problem (19) and (21) is replaced by

C2v′′n + fr′v
′
n + frvn = −N [ra]−Q(vn−1, v

′
n−1, s, C), (22)

vn(0) = 1− ra(0), v′n(1) = −r′a(0). (23)

The two point boundary value problem (22) and (23) is solved using a
Galerkin finite element procedure, with v0 = 0 and an approximate tempera-
ture profile, s0 is found by solving (3) subject to s(0) = 1 with r(z) = ra(z),
to obtain v1. v1 is then substituted into Q(v, v′, s, C) and the system (22)
and (23) is solved again to yield a second update v2 and so the process con-
tinues. The temperature contribution s is updated after each iterate. The
iteration process continues until a successive iterate absolute tolerance of 10−6
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Figure 1: Comparison between isothermal (blue) and thermal (red) radius,
velocity, and thickness profiles. B = 0.21 , C = 0.15 , f0 = 0.969 , H = 0.01 ,
J = 0.03 , w = 7.448 , sa = 0.1 .

is achieved upon which the residual is checked and the process terminates.
Once a radial (and temperature) profile have been obtained, a velocity profile
is found from (8) with r(z) = rn(z) and s(z) = sn(z), where rn(z) and sn(z)
are the iterated solutions after n iterates where tolerances have been met. A
film thickness profile is found from (9) upon substitution of the radial and
velocity solutions.

4 Results and discussion

The iterative process described in Section 3 based on the approximate isother-
mal profile (10) was applied for appropriate values of the bubble parameters,
to obtain the bubble radius, film velocity and film thickness as functions of
the axial variable z on 0 ≤ z ≤ 1 .

Figure 1 compares these quantities in the isothermal (η ≡ 1, w ≡ 0)
and thermal cases. Evidently, the radius increases uniformly when a tem-
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Figure 2: Plot of radius, velocity, temperature and thickness profiles for
varying values of H.
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Figure 3: Plot of radius, velocity, temperature and thickness profiles for
varying values of J .
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Figure 4: Plot of radius, velocity, temperature and thickness profiles for
varying values of w.
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Figure 5: Plot of radius, velocity, temperature and thickness profiles for
varying values of T0.
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perature profile is present, while the velocity profile changes dramatically,
with temperature effects causing the freezeline velocity to reduce noticeably.
Thermal effects are also evident in the thickness profile, with overall more
rapid thickness reduction, but eventually a slightly larger thickness at the
freezeline.

Figures 2, 3, 4 and 5 display variation of the radius, velocity, temperature
and thickness profiles with the overall heat transfer coefficient, H, emissiv-
ity, J , activation energy, w and extrusion temperature, T0 respectively. In
each case, increasing the relevant thermal parameter leads to a (generally)
uniform increase in bubble radius (with corresponding increase in blow up
ratio ρBU), and uniform decreases in the velocity, temperature and thickness
profiles, with the most marked changes arising for variation of H and J ,
the transfer coefficients in the temperature equation (3), and T0, the film
extrusion temperature (in the case of the bubble axial temperature profile).
These reflect the general trends indicated in Figure 1. There are also subtle
interchanges, particularly toward the freezeline z = 1 in the film thickness,
and mid-bubble in the film velocity.
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