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Process capability estimation for non–normal
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Abstract

In today’s competitive business environment, it is becoming more
crucial than ever to assess precisely process losses due to non-compliance
to customer specifications. To assess these losses, industry is widely
using process capability indices for performance evaluation of their
processes. Determination of the performance capability of a stable
process using the standard process capability indices requires that the
underlying process data should follow a normal distribution. How-
ever, if the data is non-normal, measuring process capability using
conventional methods can lead to erroneous results. Different process
capability indices such as Clements percentile method and data trans-
formation method have been proposed to deal with the non-normal
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situation. Although these methods are practiced in industry, there is
insufficient literature to assess the accuracy of these methods under
mild and severe departures from normality. This article reviews the
performances of the Clements non–normal percentile method, the Burr
based percentile method and Box–Cox method for non-normal cases.
A simulation study using Weibull, Gamma and Lognormal distribu-
tions is conducted. Burr’s method calculates process capability indices
for each set of simulated data. These results are then compared with
the capability indices obtained using Clements and Box–Cox methods.
Finally, a case study based on real world data is presented.
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1 Introduction

Process mean µ, process standard deviation σ and product specifications are
basic information used to evaluate process capability indices. However, prod-
uct specifications are different in different products [10]. A frontline manager
of a process cannot evaluate process performance using µ and σ only. For
this reason Juran [9] combined process parameters with product specifica-
tions and introduced the concept of Process capability indices (pci). Since
then, the most common indices being applied by manufacturing industry
are process capability index Cp and process ratio for off-center process Cpk
defined as

Cp =
Allowable process spread

Actual process
=
Ut − Lt

6σ
, (1)

Cpk = min{Cpu, Cpl} , (2)

Cpu =
Ut − Lt

3σ
, Cpl =

µ− Lt
3σ

, (3)

where Ut and Lt are the upper and lower tolerance limit respectively, and
Cpu and Cpl refer to the upper and lower one sided capability indices. In the
actual manufacturing process, µ and σ are unknown and are often estimated
using historical data [14]. Note that Cp is applied to determine process
capability with bilateral specifications whereas Cpu and Cpl are applied to
process capability with unilateral specification.

The capability indices Cp and Cpk are essentially statistical measures and
their interpretations rely on the validity of certain assumptions. Some of the
basic assumptions of traditional process capability indices are that

• the process under examination must be under control and stable;

• the output data must be independent and normally distributed.

However, these assumptions are not usually fulfilled in practice. Many phys-
ical processes produce non-normal data and quality practitioners need to
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verify that the above assumptions hold before deploying any pci techniques
to determine the capability of their processes. This article discusses process
capability techniques in cases where the quality characteristics data is non-
normal and then compare the accuracy of these pcis using Burr XII distri-
bution [1] instead of the Pearson family of curves employed in the Clements
percentile method [4]. For illustrative purposes, we perform a comparison
study of Burr based pci with Clements and Box–Cox [3] power transforma-
tion methods. Finally, Section 4 presents two application examples with real
data.

2 Methods to estimate process capability

for non-normal process

When the distribution of the underlying quality characteristics data is not
normal, there have been some modifications of the conventional pcis pre-
sented in the quality control literature to resolve the issue of non-normality.
Kotz and Johnson [7] presented a detailed overview of the various approaches
related to pcis for non-normal data. One of the more straightforward ap-
proaches is to transform the non-normal output data to normal data. John-
son [5] proposed a system of distributions based on the moment method,
called the Johnson transformation system. Box and Cox [3] also used trans-
formations for non-normal data by presenting a family of power transforma-
tions which includes the square-root transformation proposed by Somerville
and Montgomery [13] to transform a skewed distribution into a normal one.
The main objective of all these transformations is that once the non-normal
data is transformed to normal data, one then apply the same conventional
process capability indices which are based upon the normal assumption.
Clements [4] proposed another approach to handle non-normal data: this
is called a quantile based approach and provides an easy method to assess
the capability indices for non-normal data. Clements used non-normal per-
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centiles to modify the classical capability indices.

2.1 Clements percentile method

The Clements Method is popular among quality practitioners in industry.
Clements [4] proposed that 6σ in equation (1) be replaced by the lengths of
interval between the upper and lower 0.135 percentage points of the distri-
bution of X, that is, the denominator in equation (1) is replaced by Up−Lp :

Cp =
Ut − Lt
Up − Lp

, (4)

where Up is the upper 99.865 percentile and Lp is the lower 0.135 percentile
of the observations respectively. Since the median M is the preferred central
value for a skewed distribution, he also defined

Cpu =
Ut −M
Up −M

, (5)

Cpl =
M − Lt
M − Lp

, (6)

and Cpk = min{Cpu, Cpl} . (7)

The Clements Method uses the standard estimators of skewness and kurtosis
that are based on third and fourth moments respectively which may not be
reliable for very small sample sizes [12]. These third and fourth moments
are then used to fit a suitable Pearson distribution using the data set. The
upper and lower percentiles are then obtained from the selected Pearson
distribution. Wu et al. [15] conducted research indicating that the Clements
Method cannot accurately measure the capability indices, especially when
the underlying data distribution is skewed.
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2.2 Box–Cox power transformation method

Box and Cox [3] proposed a family of power transformations on a necessarily
positive response variable X given by

X(λ) =

 Xλ − 1

λ
, if λ 6= 0 ,

ln(X) , if λ = 0 .
(8)

This transformation depends upon a single parameter λ that is estimated
using Maximum Likelihood Estimation (mle) [9]. The transformation of
non-normal data to normal data using Box–Cox transformation is available
in most statistical software packages; consequently, the users can deploy this
technique directly to evaluate pcis.

2.3 The Burr percentile method

Burr [1] proposed a distribution called Burr XII distribution to obtain the
required percentiles of a variate X. The probability density function of a
Burr XII variate Y is

f(y|c, k) =


ckyc−1

(1 + yc)k+1
, if y ≥ 0, c ≥ 1, k ≥ 1 ,

0 , if y < 0 ,

(9)

where c and k represent the skewness and kurtosis coefficients of the Burr
distribution respectively.

Liu and Chen [12] introduced a modification based on the Clements
method, whereby instead of using Pearson curve percentiles, they replaced
them with percentiles from an appropriate Burr distribution. The proposed
method is outlined in the following steps and also illustrated by an example
with Ut = 32 and Lt = 4 in Table 1.
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1. Estimate the sample mean x̄, sample standard deviation s, skewness s3

and kurtosis s4 of the original sample data. Note that

s3 =
n

(n− 1)(n− 2)

∑ (
xj − x̄
s

)3

and s4 =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

∑ (
xj − x̄
s

)4

− 3(n− 1)2

(n− 2)(n− 3)
.

2. Calculate standardized moments of skewness α3 and kurtosis α4 as

α3 =
(n− 2)√
n(n− 1)

s3 (10)

and α4 =
(n− 2)(n− 3)

(n2 − 1)
s4 + 3

(n− 1)

(n+ 1)
. (11)

The kurtosis defined by (11) is commonly known as the excess kurtosis
since it adjusts the ordinary kurtosis value above and below the value of
+3.00 (which indicates the absence of kurtosis , that is, the distribution
is mesokurtic). Negative value identifies a platykurtic distribution and
positive value that of a leptokurtic distribution.

3. Use the values of α3 and α4 to select the appropriate Burr parameters
c and k [1]. Then use the Burr distribution XII [2] to obtain the
distribution of the standardized variate

Z =
Y − µ
σ

,

where Y is the selected Burr variate, µ and σ its corresponding mean
and standard deviation respectively. The means and standard devia-
tions, as well as skewness and kurtosis coefficients, for a large collection
of Burr distributions are found in tables of Burr [2], Liu and Chen [12].
From these tables, the standardized 0.00135, 0.5, 0.99865 percentiles,
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that is, Z0.00135, Z0.5 and Z0.99865, are obtained. Obtain corresponding
percentiles of X by matching the two standardized values, that is

X − x̄
s

=
Y − µ
σ

. (12)

4. From (12), the estimated percentiles for lower, median, and upper per-
centiles are

Lp = x̄+ sZ0.00135 , (13)

M = x̄+ sZ0.5 , (14)

and Up = x̄+ sZ0.99865 . (15)

5. Calculate process capability indices using equations (4) to (7).

Instead of using moments of skewness and kurtosis as we have done here,
other methods such as Maximum Likelihood, Method of Probability-Weighted
Moments and Method of L-Moments [11] are also used to estimate parame-
ters of a Burr distribution. However, our choice is determined by the fact that
quality control practitioners with little background in theoretical statistics
will find the estimation procedure adopted here, which is simply a moment
matching process, much easier to comprehend and apply.

3 A simulation study

3.1 Comparison criteria

Different comparison yardsticks lead to different conclusions. A widely rec-
ognized yardstick for tackling the non-normality problem for pci estimation
is given by Rivera et al. [8]. They used upper tolerance limits of the under-
lying distributions to calculate the actual number of non-conformance items
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Table 1: PCI calculations using Burr Percentile Method.
Procedure Parameters Calculated values
Enter specifications:
Upper tolerance limit Ut 32
Lower tolerance limit Lt 4
Estimate sample statistics:
Sample size n 100
Mean x̄ 10.5
Standard deviation s 3.142
Skewness s3 1.14
Kurtosis s4 2.58
Use s3 and s4 to calculate:
Standardized moment of skewness α3 1.12
Standardized moment of kurtosis α4 4.97
Based on α3 and α4, select c and k:

c 2.347
k 4.429

Use the estimated Burr XII distribution to obtain:
standardized lower percentile Z0.00135 −1.808
standardized median Z0.5 −0.140
standardized upper percentile Z0.99865 4.528
Calculate estimated 0.135 percentile using (14): Lp 4.819
Calculate estimated median using (15): M 10.06
Calculate estimated 99.865 percentile using (15): Up 24.727
Calculate CPIs using (4)–(7) : Cp 1.40

Cpu 1.49
Cpl 1.15
Cpk 1.15.
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and equivalent Cpk values. Estimated Cpk values calculated from the data
are then compared with the target Cpk values. A similar motivated scheme
has been used as a comparison yardstick for one-sided Cpu by Tang et al. [9]
and Liu and Chen [12] in their non-normal pcis studies. For a target Cpu
value, the fraction of non-confirming items from a normal distribution can
be determined using

Fraction of non-conforming parts = Φ(−3Cpu) (16)

where Φ(x) refers to the cumulative distribution function of the standard
normal random variable [6].

In this article, the process capability index Cpu with unilateral tolerance
limit is used as comparison criterion. Weibull, Gamma and Lognormal distri-
butions are used to investigate the effect of non-normal data on the process
capability index. These distributions are known to have parameter values
that represent mild to severe departures from normality. These parameters
are selected to compare our simulation results with existing results using the
same parameters as Tang & Than [9], and Liu & Chen [12].

The probability density functions of Weibull, Gamma and Lognormal
distributions are

Weibull(α, β), α > 0, β > 0 :

f(x|α, β) =
α

β
xα−1e−x

α/β, x ≥ 0.

Gamma(α, β), α > 0, β > 0 :

f(x|α, β) =
1

γ(α)βα
xα−1e−x/β, x ≥ 0.

Lognormal(µ, σ2), −∞ < µ <∞ :

f(x|µ, σ2) =
1√

2πσ2x
e−(lnx−µ)2/2σ2

x ≥ 0.

In our simulation study, for comparison purposes, the target Cpu values of 0.5,
1.0, 1.5 and 2.0 and the Weibull distribution with α = 1.2 and β = 1.0 ,
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Gamma distribution with α = 1.0 and β = 1.0 and Lognormal distribution
with µ = 0 and σ2 = 1.0 are used. The corresponding Ut value for each
distribution is

Ut = Cpu(X0.99865 −X0.5) +X0.5 , (17)

where X0.99865 and X0.5 are the designated percentiles of the corresponding
distribution. For example, if Cpu = 1.5 and the underlying distribution is, say
Weibull with parameter values α = 1.2 and β = 1 , then using any statistical
package one obtain the two percentiles which areX0.99865 = 4.8236 andX0.5 =
0.7368 respectively. Then we use equation (17) to find the corresponding Ut
which equals 6.867.

We next simulate 30 samples, each of size 100, from each distribution and
follow the steps outlined below to calculate the corresponding Cpu for each
sample.

1. Choose a distribution with known parameters, for example, Weibull
α = 1.2 and β = 1 .

2. Find X0.99865 and X0.5 for this distribution using any statistical package.

3. Choose a target Cpu value, say Cpu = 1.5.

4. Use (17) to calculate Ut, which equals 6.867 for this example.

5. Next we compare between the three methods, Clements, Box-Cox and
Burr using the next series of steps.

6. Simulate values from underlying distribution.

7. Use each method to estimate X0.99865 and X0.5.

8. For a target Cpu value, say 1.5, and corresponding Ut value, say 6.867,
calculate the Cpu values using all three methods (similar to Table 1).
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9. Compare these calculated Cpu values using standard statistical mea-
sures and graphs to decide which, among the three methods, leads to
the most accurate estimate of the target Cpu value.

The main criteria used to compare between the three methods is to determine
the precision and accuracy of process capability estimations. The best and
most suitable method will have the mean of the estimated Cpu values closest
to the target value (that is, greatest accuracy) and will have the smallest
variability, measured by standard deviation of the estimated values [9] (that
is, greatest precision).

3.2 Simulation runs

As discussed in Section 3.1, we generate 30 samples, each of size 100, from
specific Weibull, Gamma and Lognormal distributions. After each simula-
tion run, the necessary statistics, such as mean, standard deviation, median,
skewness, kurtosis, upper and lower 0.135 percentiles were obtained. In this
article, Cpu is used as comparison criterion. The capability index for the
non-normal data should be compatible with that computed under normality
assumption, given the same fraction of non-conforming parts [9]. The esti-
mates for Cpu were determined using Burr, Clements and Box–Cox methods
steps outlined in Section 3.1. The average value of all 30 estimated values
and their standard deviations were calculated and presented in Tables 2–4.

To investigate the most suitable method for dealing with non-normality
presented by Weibull, Gamma, and Lognormal distributions, we present box
plots of estimated Cpu values using all three methods (Figures 1–3). Box plots
are able to graphically display important features of the simulated Cpu values
such as median, inter-quartile range and existence of outliers. These figures
indicate that the means using Burr method is closest to their targeted Cpu
values and the spread of the values is smaller than that using Clements
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Table 2: The mean and standard deviation of 30Cpu values with n = 100
(Weibull).

Burr Clements Box-Cox
Cpu Ut mean Std mean Std mean Std
0.5 2.780 0.596 0.090 0.590 0.099 0.621 0.100
1.0 4.824 1.152 0.159 1.159 0.175 0.956 0.194
1.5 6.867 1.708 0.228 1.727 0.252 1.204 0.283
2.0 8.910 2.264 0.297 2.296 0.328 1.407 0.367

Table 3: The mean and standard deviation of 30Cpu values with n = 100
(Gamma).

Burr Clements Box-Cox
Cpu Ut mean Std mean Std mean Std
0.5 3.650 0.578 0.091 0.593 0.105 0.611 0.075
1.0 6.608 1.117 0.166 1.159 0.188 0.897 0.132
1.5 9.565 1.655 0.241 1.725 0.271 1.099 0.185
2.0 12.522 2.194 0.316 2.290 0.354 1.262 0.233

method, therefore indicating a better approximation. Box–Cox method gives
comparable results for smaller target values.

3.3 Discussion

As mentioned in Section 3.1, the performance yardstick is to determine the
accuracy and precision for a given sample size. To determine accuracy, we
looked at the mean of the estimated Cpu values and for precision, we focused
on the standard deviation of these values using all three methods. Looking
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Table 4: The mean and standard deviation of 30Cpu values with n = 100
(Lognormal).

Burr Clements Box-Cox
Cpu Ut mean Std mean Std mean Std
0.5 4.482 0.499 0.084 0.496 0.097 0.503 0.048
1.0 8.339 1.024 0.166 1.031 0.183 0.710 0.061
1.5 12.009 1.523 0.243 1.541 0.265 0.832 0.070
2.0 15.679 2.022 0.320 2.050 0.348 0.921 0.076

Figure 1: Box plot of estimated Cpu values with target Cpu = 0.5, 1.0, 1.5
and 2.0 for Weibull distribution.
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Figure 2: Box plot of estimated Cpu values with target Cpu = 0.5, 1.0, 1.5
and 2.0 for Gamma distribution.
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Figure 3: Box plot of estimated Cpu with target Cpu = 0.5, 1.0, 1.5 and 2.0
for Lognormal distribution.
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at the results depicted in Tables 2–4, we conclude that

1. The Burr method is the one for which the mean of the estimated value
deviates least from the targeted Cpu values.

2. The standard deviation of the estimated Cpu values using the Burr
method is smaller than Clements method.

3. Box–Cox method does not yield results close to any targeted Cpu values
except for smaller targeted values.

During our simulation exercises, we also observed that larger sample sizes
yield better estimates for all methods. Therefore, sample size does have
an impact on process capability estimate. It was also observed that larger
targeted Cpu values led to slightly worse estimates for all methods.

4 Case studies

4.1 Example 1

The real data set, consisting of 30 independent samples each of size 50, is
from a semiconductor manufacturing industry. The data are measurements
of bonding area between two surfaces with upper specification Ut = 24.13 .
Initially, an X̄-R chart was used to check whether or not the process is
stable before further analysis of the experimental data. Figure 4 shows the
histogram of the data. Using a Goodness of Fit Test, the data is best fitted
by a Gamma distribution with α̂ = 2543.8 and β̂ = 0.00921 .

We used all three methods to estimate Cpu. The mean and standard
deviation of the estimated Cpu values using each method is presented in
Table 5. The actual Cpu value of this process, derived using equation (5)
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Figure 4: Histogram of data from a semiconductor industry.

and based on 1500 products, is 0.3775. The results in Table 5 show that the
mean value obtained using Burr method is closest to the actual value.

4.2 Example 2

In the second case study, we present a capability analysis using a real set
of data obtained from a computer manufacturing industry in Taiwan [15].
Again, the analysis is based on 30 independent samples, each of size 50. The
data set has the one sided specification limit Ut = 0.2 mm. Figure 5 shows
the histogram of the data which shows that the underlying distribution is not
normal and is right skewed. However, the data do not appear to be best fitted
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Table 5: Process capability analysis results for semiconductor data.

Method Ut Cpu mean Cpu Std
Clements 24.13 0.4368 0.0934
Burr 24.13 0.4207 0.0768
Box–Cox 24.13 0.4999 0.0608

Table 6: Process capability analysis results for computer manufacturing
process.

Method Ut Cpu mean Cpu Std
Clements 0.2 mm 2.0432 0.4354

Burr 0.2 mm 1.9251 0.3490
Box-Cox 0.2 mm 1.2431 0.2266

by any of the distributions we have used in this paper. All three methods
have been applied to estimate process capability of this right skewed data.
The estimated Cpu results are displayed in Table 6. The actual Cpu value of
this process is 1.8954 and one of the reasons for selecting this example is to
compare the three methods for a process where the capability index is greater
than 1.5. The results in Table 6 again show that mean value obtained using
the Burr method is closest to the actual value.

5 Conclusions

The main purpose of this article is to compare and contrast between three
methods of obtaining process capability indices and determine which method
is more capable in achieving higher accuracy in estimating these indices for
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Figure 5: Histogram of measurement data from a computer manufacturing
process.
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non-normal quality characteristics data. Simulation study indicates that
Burr’s method generally provides better estimate of the process capability
for non-normal data. Finally, two real examples from industry are presented.
The results using these experimental data show that the estimated Cpu values
obtained using Burr method are closest to the true values compare to other
methods. In conclusion, Burr method is therefore deem to be superior to
the other two methods for estimating the process capability indices for non-
normal data. However, we strongly recommend further investigation of the
Burr method for calculating pcis for data whose underlying distributions
show significant departures from normality.
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