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Subgrid and interelement interactions affect
discretisations of stochastically forced diffusion
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Abstract

Constructing discrete models of stochastic partial differential equa-
tions is very delicate. I apply dynamical systems theory to support
spatial discretisations of the stochastically forced diffusion equation.
To apply stochastic centre manifold theory, divide the physical domain
into finite sized elements by introducing insulating internal bound-
aries which are later removed to fully couple the dynamical interac-
tions between neighbouring elements. The approach automatically
parametrises the stochastically forced microscale, subgrid structures
within each element. The crucial aspect of this work is that we ex-
plore how a multitude of noise processes interact within and between
neighbouring elements. Noise processes with coarse structure across
a finite element are the most significant noises for the discrete model.
Their influence also diffuses away to weakly correlate the noise in a
spatial discretisation.

See http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/36
for this article, c© Austral. Mathematical Soc. 2007. Published August 31, 2007. ISSN
1446-8735
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1 Introduction

We explore the nondimensional stochastically forced diffusion equation (sfde)

∂u

∂t
=
∂2u

∂x2
+ σφ(x, t) , (1)

for a field u(x, t) evolving in time t in one spatial dimension x. The sfde (1)
has solutions forced by the stochastic noise φ(x, t) controlled by the strength
parameter σ, and dissipated by diffusion, uxx. Figure 1 shows the typical
seething microscale structures in one simulation of the sfde (1). We test a
methodology for closure of macroscale spatial discretisations of the sfde (1)
through analysing and rationally modelling the microscale stochastic dynam-
ics within and between spatial elements.
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Figure 1: microscale simulation of one realisation of the stochastically
forced diffusion sfde (1), with noise intensity σ = 1 . This simulation uses
the sde (2) on a fine space-time mesh with δx = π/16 and δt = 0.01 but
plotted every 19th time step.
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There are tricky subtleties. For example, the simplest finite difference
approximation in space of the sfde (1) on a regular grid in x, say Xj = jh

for some constant grid spacing h, is

U̇j =
Uj+1 − 2Uj +Uj−1

h2
+ σφ(Xj, t) , (2)

where an over-dot denotes the time derivative d/dt, and Uj(t) = u(Xj, t) is
the value of the field u(x, t) at the grid points Xj. Finite element approxi-
mations are similar. However, the analysis of Section 3 recommends we use
instead

U̇j ≈
Uj+1 − 2Uj +Uj−1

h2
+ σψj

−
σ

24
(ψj+1 − 2ψj +ψj−1) +

σ

12
√
10

(ψ̂j+1 − 2ψ̂j + ψ̂j−1) , (3)

see (21), for some independent noise processes ψj and ψ̂j. The rationale
is that the spatial diffusion on the subgrid scale between the grid points
weakly correlates the noise that should be applied to each grid value. Thus
the point sample φj of the noise φ in the simple model sde (2) should be
modified to spread a little across neighbouring elements; additionally, a small
independent component ψ̂j is also distributed over each triple of neighbouring
grid values. Accounting explicitly for subgrid microscale physical processes
resolves interaction between noise and diffusion to give the model sde (3).

Stochastic centre manifold (scm) theory supports the long time, macroscale
modelling of detailed stochastic microscale dynamics [2, 6, e.g.]. Section 2
applies the scm theory of Boxler [2] to support the discrete model sde (3)
of the sfde (1). The methodology develops that used to rationally discre-
tise deterministic pdes [9, 10, 11, 7]. The fiendish complication discussed in
Section 3 is to account for noise and its dynamics which are distributed inde-
pendently across space as well as time, both within an element and between
neighbouring elements.

We discuss the forcing φ(x, t) as delta correlated in both space and time.
However, most of the analysis also holds for deterministic forcing φ(x, t).
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Nonetheless, for definiteness, interpret all noise processes and all sdes in the
Stratonovich sense so that the rules of traditional calculus apply.

2 Stochastic centre manifold theory

underpins modelling

I describe one way to place the spatial discretisation of spdes within the
purview of stochastic centre manifold (scm) theory. Then scm theory assures
us of the existence and relevance of the discrete model constructed Section 3.
The sfde (1) serves as a definite example of a broad class of dissipative
spdes. The same methodology will be applied to nonlinear spdes.

Discretise space by the following artifice. For definite theoretical state-
ments, suppose the field is L-periodic in the space coordinate x; that is,
u(x + L, t) = u(x, t) . Divide one period of the domain into m elements of
equal and finite length h = L/m . Place equi-spaced grid points at Xj at the
centre of each element so that the jth element is notionally |x − Xj| < h/2 .
Mathematically we actually form the elements by introducing the artificial
internal coupling conditions (iccs)

uj(Xj±1, t) − uj(Xj, t) = γ
[
uj±1(Xj±1, t) − uj(Xj, t)

]
, (4)

where uj(x, t) denotes the subgrid scale field of the jth element—an element
analytically extended to the neighbouring grid points x = Xj±1 . The coupling
parameter γ controls the flow of information between adjacent elements:
when γ = 0 , adjacent elements are decoupled; when γ = 1 , the field in
the jth element must extrapolate to the neighbouring elements’ field at their
grid point. These iccs ensure, to high order in small element size h, that the
discrete models are consistent with linear deterministic pdes [10].

Base the discrete scm modelling upon the dynamics when: firstly, the
noise is absent, σ = 0 ; and secondly, each element is decoupled from its
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neighbours, γ = 0 . When σ = γ = 0 the dynamics of sfde (1) with iccs (4)
reduce to that of deterministic linear diffusion within each element insulated
from its neighbours:

∂u

∂t
=
∂2u

∂x2
such that ±h∂uj

∂x

∣∣∣∣
x=Xj±h/2

= 0 . (5)

The discrete icc (4) linearises to the above element boundary conditions (5)
as the discrete icc (4) is equivalent to [9]

±h∂uj
∂x

∣∣∣∣
x=Xj±h/2

= γ
[
Auj±1|x=Xj±1

− Auj|x=Xj

]
, (6)

where the near identity operator

A =
±h∂x

exp(±h∂x) − 1
= 1∓ 1

2
∂x + 1

12
∂2x − 1

720
∂4x + 1

30240
∂6x +O

(
∂8x
)
.

All discussions of theoretical support for the discretisation use the element
iccs (6) instead of the computationally convenient iccs (4). Although the
analysis is based upon the near trivial parameter values σ = γ = 0 , stochastic
centre manifold theory consequently supports the modelling of the dynamics
at finite noise, σ 6= 0 , and finite interelement coupling, γ 6= 0 .

2.1 A stochastic slow manifold exists

The spectrum of the base diffusion problem (5) ensures a discretisation exists.
In each element, (5) has solutions composed of a linear combination of modes
u ∝ csnkθ exp(−βkt) where: firstly, the Fourier modes

csnkθ =

{
coskθ , for even k,
sinkθ , for odd k;

(7)

secondly, θ = π(x − Xj)/h measures subgrid position relative to the grid
point within each element—the jth element is |θ| ≤ π/2 although we do



2 Stochastic centre manifold theory underpins modelling C175

analytically extend the element to |θ| ≤ π ; thirdly, the integer k is the
subgrid scale wavenumber; and lastly, the kth mode decays with rate

βk =
π2k2

h2
, k = 0, 1, 2, . . . . (8)

The k = 0 mode, that u is constant in each element, is linearly neutral as its
decay rate β0 = 0 . These neutral modes, one from each element, form the
linear basis of the long term, discrete model.

Decompose the noise within each element as a linear combination of the
fundamental Fourier modes (7):

φ(x, t) =

∞∑
k=0

φj,k(t) csnkθ , for |x− Xj| < h/2 , (9)

where φj,k denotes the noise process of the kth wavenumber in the jth ele-
ment. Assume the set of processes {φj,k} are independent.

As the linear pde (5) has m eigenvalues of zero and all the other eigenval-
ues are negative, namely the stable eigenvalues ≤ −β1 = −π2/h2 , then, after
adjoining the two trivial des dσ/dt = dγ/dt = 0 , scm theory [2, Theorem
5.1 and 6.1] assures us that in some finite neighbourhood of (u, σ, γ) = 0

there exists an m+ 2 dimensional stochastic slow manifold (ssm) where the
field in the jth element is u = uj(U(t), x, t, σ, γ), and where the jth com-
ponent Uj of vector U measures the amplitude of the neutral mode in the
jth element.1 For example, a low order approximation to the ssm is simply
deterministic Lagrangian interpolation within each element:

uj = Uj+γ
1
2
(θ/π)(Uj+1−Uj−1)+γ1

2
(θ/π)2(Uj+1−2Uj+Uj−1)+ · · · . (10)

On the ssm the amplitudes Uj evolve according to U̇j = gj(U, t, σ, γ) for
some function gj such as the discrete sde (3).

1The two extra dimensions of the ssm arise from the dependence upon the two param-
eters σ and γ.
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Unfortunately, there is a caveat: Boxler’s [2] theory is so far developed
only for finite dimensional systems which satisfy a Lipschitz condition. Here,
the sfde (1) is infinite dimensional. There is some relevant but not yet
directly applicable infinite dimensional theory [1, 5, e.g.] Future theoretical
developments should rigorously support this approach.

2.2 The stochastic slow manifold captures the
dynamics

The second key theorem of scms is that the evolution on the ssm, such as that
described by the sde (3), does capture the long term dynamics of the original
sfde (1). The Stochastic Relevance Theorem 7.1(i) [2] assures us that all
nearby solutions of the spde (1) exponentially quickly in time approach the
ssm u = uj(U(t), x, t, σ, γ) , such as the low accuracy approximation (10).
But crucially the theorem also assures us that the evolution of the trajectories
approaching the ssm also approaches, on a cross-element diffusion time, the
evolution of a trajectory on the ssm. That is, the evolution on the ssm,
such as the sde (3), faithfully describes the evolution of all solutions of
sfde (1) in some neighbourhood of the ssm. (In deterministic systems this
property has been called “asymptotic completeness” [13].) Thus, in this
context, the ssm model forms a discrete model that describes all the dynamics
of sfde (1) apart from exponentially decaying transients. This amazing
theoretical support for the model holds at finite element size h.

However, there are two significant caveats. Firstly, although the asymp-
totic series are global in the grid value amplitudes Uj, they are local in the
parameters σ and γ. Thus the rigorous theoretical support only applies in
some finite neighbourhood of σ = γ = 0 . Secondly, the discretisations we de-
velop and discuss have an error due to the finite truncation of the asymptotic
series in the noise σ and coupling γ.
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3 Construct a memoryless discretisation of

diffusion

We explore how to construct a ssm, discrete model of the sfde (1). The re-
sulting models show how diffusion of noise processes, within and between ad-
jacent elements, spatially correlate noise in the discretisation, see the sde (3).

3.1 Iteration converges to the asymptotic series

The scm approach establishes that the long term dynamics of the sfde (1)
may be parametrised by the grid value Uj. However, most analyses of sdes
generate models with convolutions over fast time scales of the noise [12, §2,
e.g.]. Here we greatly simplify the discretisation by removing such ‘memory’
convolutions [3, 4, 12, 14].

Consider the task of iteratively constructing a stochastic model for the
spde (1). We seek solutions of the spde such that within the jth element
the field is described by some asymptotic expression, u = uj(U, x, t, σ, γ) =

Uj+ · · · , such that the vector of amplitudes U evolve according to some pre-
scription that we also only know asymptotically, U̇j = gj(U, t, σ, γ) , such as
the sde (3). The steps in the construction of the asymptotic approximations
proceed iteratively. Suppose that at some stage we have some asymptotic ap-
proximation to the model, then the next iteration is to seek small corrections,
denoted u ′j and g ′j. Determine the small corrections from a linear equation
(building upon the well established detailed derivation for deterministic sys-
tems [8, e.g.], the only substantive change is the recognition of direct time
dependence in the small correction ∂u ′j/∂t): first, substitute u = uj+u

′
j and

U̇j = gj + g
′
j into the sfde (1); second, linearise the problem for u ′j and g ′j

by dropping products of small corrections; third, simplify by replacing coef-
ficients of corrections by their leading order approximation; and thus lastly,
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obtain that the corrections should satisfy

∂u ′j

∂t
−
∂2u ′j

∂x2
+ g ′j = residual(1). (11)

Here the “residual” is the residual of the sfde (1) evaluated for the currently
known asymptotic approximation. In addition, the inter-element iccs (4)
provide boundary conditions for u ′j, namely

u ′j(Xj±1, t) − u ′j(Xj, t) + residual(4) = 0 . (12)

For example, suppose at some stage we had found the deterministic part
of the model in the jth element was that of classic Lagrangian interpolation

uj(x, t) = Uj + γ
[
1
2
(θ/π)2δ2 + (θ/π)µδ

]
Uj +O

(
σ+ γ2

)
such that U̇j =

γ

h2
δ2Uj +O

(
σ+ γ2

)
, (13)

where hereafter the discrete difference and mean operators reduce the alge-
braic length of expressions, respectively δUj = Uj+1/2 − Uj−1/2 and µUj =
1
2

(
Uj+1/2 +Uj−1/2

)
. Then in the next iteration, using (13), the residual of

the sfde (1) is

residual(1) = −
γ2

h2

[
(θ/π)µδ3 + 1

2
(θ/π)2δ4

]
Uj + σ

∞∑
k=0

φj,k(t) csnkθ , (14)

whereas the iccs have residual(4) = 0 .

3.2 Corrections from a simple residual

Now explore how to solve (11–12) for corrections given some residual such
as (14). The terms in the residual split into two categories:
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• For each component of the form ψ(t) csnkθ , for wavenumber k ≥ 1 , in-
clude a corresponding component in the correction of u ′j = Zkψ(t) csnkθ
in which the operator Zk denotes convolution over the history:

Zkφ = exp[−βkt] ?ψ(t) =

∫ t
−∞ exp[−βk(t− τ)]ψ(τ)dτ . (15)

• But any component constant across the element, such as σφj,0(t) in
residual (14), must cause a contribution to the evolution correction g ′j,
here simply g ′j = σφj,0 , as no uniformly bounded component in u ′j
can match a constant component in the residual—this is the standard
solvability condition for singular perturbations.

For example, with the residual (14) the corresponding corrections g ′j and u ′j
improve the ssm model (13) to

uj(x, t) = Uj + γ
[
1
2
(θ/π)2δ2 + (θ/π)µδ

]
Uj

+ γ2
[
1
6
((θ/π)3 − (θ/π))µδ3 + 1

24
((θ/π)4 − (θ/π)2)δ4

]
Uj

+ σ

∞∑
k=1

Zkφj,k csnkθ +O
(
σ3/2 + γ3

)
, (16)

U̇j =
γ

h2
δ2Uj −

γ2

12h2
δ4Uj + σφj,0 +O

(
σ3/2 + γ3

)
, (17)

The γ2 correction modifies the deterministic terms of the model (13) to
(when fully coupled, γ = 1) classic finite difference expressions of fourth
order consistency as element size h → 0 . The noise induced σφj,0 term
straightforwardly represent the mean forcing in the jth element. It is the
next iteration that begins to account for interesting nontrivial subgrid scale
stochastic processes within the finite sized elements.
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3.3 Some convolutions need to be separated

A more delicate issue arises in subsequent corrections. The next iteration
uses (16), whence the iccs residual(4) = γσ

∑∞
k=2,even [Zkφj,k − Zkφj±1,k] +

O
(
σ3 + γ3

)
. Satisfy the iccs (12) with this residual(4) by incorporating

into the approximate ssm field (16) the following subgrid field correction
u ′j = +γσ

[
(θ/π)µδ+ 1

2
(θ/π)2δ2

]∑∞
k=2,evenZkφj,k . Then using (17) and the

Fourier expansion of this correction added to the right-hand side of (16), the
sfde (1) has

residual(1) = γσδ2
∞∑

k=2,even

(
1

h2
+
βk

24

)
Zkφj,k − γσ

1

24
δ2

∞∑
k=0,even

φj,k

− γσ
4

π2

∞∑
k=1,odd

(−1)
k−1

2

k2
sinkθµδ

[ ∞∑
`=0,even

φj,` −

∞∑
`=2,even

β`Z`φj,`

]

− γσ
2

π2

∞∑
k=2,even

(−1)k/2

k2
coskθ δ2

[ ∞∑
`=0,even

φj,` −

∞∑
`=2,even

β`Z`φj,`

]
+O

(
σ3 + γ3

)
. (18)

The components of csnkθ in the second and third line above just induce a cor-
responding component in the correction u ′j via a further convolution Zk. The
components constant across the element, in the first line above, are the deli-
cate issue. Part of these components can be integrated in time [4, 14, 3, 12]:
since for any φ(t), d

dt
Zkφ = −βkZkφ + φ , from the stochastic convolution

definition (15), thus Zkφ = 1
βk

[
− d
dt
Zkφ+ φ

]
, and so we separate such a

convolution in the residual, when multiplied by the neutral mode of a con-
stant across the element, into:

• the first part, − d
dt
Zkφ/βk , which is integrated into the next update u ′j

for the subgrid field;

• and the second part, φ/βk , which updates g ′j without introducing a
fast-time memory convolution into the evolution.



3 Construct a memoryless discretisation of diffusion C181

For the example residual (18) the terms in the first line thus force terms
−γσδ2

∑∞
k=2,even

(
1

π2k2 + 1
24

)
Zkφj,k into the subgrid field making the ssm

uj(x, t) = Uj + γ
[
1
2
(θ/π)2δ2 + (θ/π)µδ

]
Uj

+ γ2
[
1
6
((θ/π)3 − (θ/π))µδ3 + 1

24
((θ/π)4 − (θ/π)2)δ4

]
+ σ

∞∑
k=1

Zkφj,k csnkθ

− γσ
4

π2

∞∑
k=1,odd

(−1)
k−1

2

k2
sinkθµδZk

[ ∞∑
`=0,even

φj,` −

∞∑
`=2,even

β`Z`φj,`

]

− γσ
2

π2

∞∑
k=2,even

(−1)k/2

k2
coskθ δ2Zk

[ ∞∑
`=0,even

φj,` −

∞∑
`=2,even

β`Z`φj,`

]

− γσδ2
∞∑

k=2,even

(
1

π2k2
+
1

24

)
Zkφj,k +O

(
σ3 + γ3

)
. (19)

More interestingly, the terms in the first line of the example residual (18)
also force a correction to the evolution to the model sde

U̇j =
γ

h2
δ2Uj −

γ2

12h2
δ4Uj + σφj,0

+ γσδ2

[
−
1

24
φj,0 +

1

π2

∞∑
k=2,even

1

k2
φj,k

]
+O

(
σ3 + γ3

)
. (20)

The order of error in these approximations comes from the terms present in
the residuals but so far ignored when determining corrections.

3.4 Diffusion correlates noise across elements

The sde (20) shows, through the second difference terms δ2φj,k, noise sources
affect neighbouring elements. This effect arises because the noise in one
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element creates spatial structures that diffuse out into neighbouring elements
and affect the evolution.

The asymptotic approximate sde (20) models the forced diffusion dynam-
ics of the sfde (1) when we set the coupling parameter γ = 1 . Undesirably,
the resultant model sde has an infinite sum of noise components. Thus we
combine the infinite sum of noise terms into just one unknown noise with the
same statistics:

1

π2

∞∑
k=2,even

1

k2
φj,k ≡

1

4π2

√√√√ ∞∑
n=1

1

n4
φ̂j(t) =

1

12
√
10
φ̂j(t)

where the effectively new stochastic noise φ̂j(t) represents the cumulative
effect of the infinite sum of the stochastic components φj,k for k even. Thus
the model (20) becomes, in the fully coupled case of γ = 1 ,

U̇j =
1

h2
δ2Uj −

1

12h2
δ4Uj + σ

[
φj,0 − 1

24
δ2φj,0 + 1

12
√
10
δ2φ̂j

]
. (21)

Instead of the infinite number of noise processes in (20), this model has only
2m noise modes for a spatial domain with m elements.

The interesting and subtle component of the model (21) is 1
12
√
10
δ2φ̂j.

Numerical simulations confirm this component exists on the macroscale. To
see the effect most clearly the numerical simulation plotted in Figure 2 has
noise components φj,k = 0 for k = 0 and for odd k. Also, Figure 2 applies
the noise φ =

∑∞
2,evenφ1,k(t) coskθ to just one macroscale element, namely

0 < x < π/2 , to see how its influence spreads in space. See that although
the noise induced fluctuations dominantly occur in the forced element, the
noise has a weak effect outside the element. The component δ2φ̂j in (21)
models this weak effect.

Simulations also confirm the amplitudes of the component 1
12
√
10
δ2φ̂j. Fig-

ure 3 plots two grid values of the field u(x, t) as a function of time t: one



3 Construct a memoryless discretisation of diffusion C183

−0.6−0.20.20.6
u

0
1

2
3

4
5

6
7

x

0

2

4

6

8

10

12

t

Figure 2: microscale simulation of the stochastically forced diffusion
spde (1) (δx = π/16 and δt = 0.01 on a 2π-periodic domain). Here restrict
the noise φ(x, t) to one quarter of the domain, representing one macroscale
element, and to the even modes, φ =

∑∞
2,evenφ1,k(t) coskθ . A weak field

diffuses out into the surrounding domain correlating the effective macroscale
noise as in (21).
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u

smoothed
neighbour

0 2 4 6 8 10 12
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

time t

Figure 3: for the simulation shown in Figure 3, plot the smoothed
“macroscale grid value” u(π/4, t) and the neighbouring “macroscale grid
value” u(3π/4, t) as a function of time. The microscale stochastic forcing
in one element generates the effectively opposite forcing in the neighbouring
elements as predicted by (21).
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at the centre x = 1
4
π of the forced element, 0 < x < 1

2
π ; and the other

at the centre x = 3
4
π of the adjacent element, 1

2
π < x < π . But recall

that (21) models macroscale space-time dynamics. Thus I smooth the mi-
croscale time fluctuations of the grid value u(1

4
π, t) with the normalised

operator Ẑ1 = [Z11]−1Z1 that smooths over an inter-element diffusion time.
See in Figure 3 that the smoothed grid value of the forced element has very
much the same shaped fluctuations, but opposite and roughly twice the size
of the fluctuations in the neighbouring grid value. This is as predicted by the
model (21). Furthermore, the model predicts the standard deviation of the
the two grid values should be 1/6

√
10 = .0527 and 1/12

√
10 = .0264 . The

simulation shown in Figure 3 has standard deviations .050 and .021, respec-
tively, which are close enough considering the relatively few inter-element
diffusion times simulated in the figure. Such quantitative agreement between
the subtleties of the ssm modelling and the numerical simulations supports
this approach to modelling spdes.

4 Conclusion

The particular example sfde (1) demonstrates how to analyse the net ef-
fect of many independent subgrid stochastic effects both within an element
and between neighbouring elements. scm theory [2] supports the existence,
relevance and order of accuracy of the discrete models.

Further research will explore the modelling of spdes: on domains with
physical boundary conditions at their extremes [11, for pdes]; in higher spa-
tial dimensions [7, for pdes]; to models of higher order in the coupling be-
tween elements; with the aid of computer algebra to handle the enormous
details of the nonlinear subgrid dynamics and the inter-element interactions
in nonlinear spdes; and the appearance in nonlinear spdes of effective mean
drift and volatility effects of components quadratic in the noise [3, 12].
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