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Modeling and analysis of biodegradation of
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Abstract

An endogenous depolymerization model based on uniform weight
distribution is introduced. The time dependent model with temporal
dependent degradation rate is reduced to a time independent model.
The previously developed techniques were applied to an inverse prob-
lem to determine the degradation rate. The transition of weight distri-
bution was simulated by solving an initial value problem. Those tech-
niques are applied to degradation processes of polylactic acid. They
are applicable to other polymers subject to endogenous depolymeriza-
tion processes.
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1 Introduction

Biodegradation is an essential factor for environmental protection against
inadequate accumulation of xenobiotic polymers in the environment. Micro-
bial depolymerization processes fall into one of two categories: exogenous
type or endogenous type [1]. In exogenous depolymerization processes, the
degradation is restricted only to the terminals of molecules, where monomer
units are separated stepwise. Examples of polymers subject to exogenous de-
polymerization include polyethylene (pe) and polyethylene glycol (peg). We
proposed a mathematical model for pe biodegradation and introduced ex-
perimental results into analysis based on the model to determine degradation
rates and to simulate transitions of weight distribution [2, 3, 4, 13, 14, 15]. We
adapted the exogenous depolymerization model developed for pe biodegra-
dation to analysis of peg depolymerization [16, 19].

Unlike exogenous depolymerization processes, molecules can split inter-
nally in endogenous depolymerization processes. Examples of endogenous
depolymerization processes include the enzymatic degradation of polyvinyl
alcohol (pva). We proposed a mathematical model for enzymatic degra-
dation of pva, and introduced gel permeation chromatography (gpc) data
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before and after degradation of pva [7] into analysis to determine degradation
rates. We solved those problems numerically, and simulated the transition of
the weight distribution [12, 13, 17]. The experimental and analytical study
of endogenous depolymerization has continued to cover degradation of poly-
lactic acid (pla) [18]. Figure 1 shows the weight distribution of pla before
and after enzymatic degradation for five hours and sixty-seven hours. We
formulated an inverse problem to determine the degradation rate for which
the solution of the initial value problem also satisfies the weight distribution
after five hours of incubation.

During incubation, pla was dissolved in chloroform. As the time elapsed,
chloroform was lost by evaporation, resulting in reduced degradation rates.
In a previous study we considered the temporal change of degradability, and
incorporated a temporally dependent degradation rate into the endogenous
depolymerization model. We continue the study of endogenous depolymer-
ization in this article. We introduce a mathematical model of endogenous
depolymerization. We describe numerical techniques to analyze the model,
and present numerical results.

2 Derivation of model

In order to formulate an enzymatic degradation process of a polymeric com-
pound mathematically, let w (t,M) be its weight distribution with respect
to the molecular weight M at time t. For K ≤ M , let p (t,K,M) de-
note the weight transition from w (t,M) to w (t,K) per unit time. We have
shown [12, 13, 17, 18] that the functions w (t,M) and p (t,K,M) satisfy

∂w

∂t
(t,M) = −

∫ M

0

p (t,K,M) dK +

∫ ∞
M

p (t,M,K) dK . (1)

Let γ (t,M) be the amount which w (t,M) loses per unit time and unit
weight. Then the rate of loss of w (t,M) is γ (t,M)w (t,M). Suppose that
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Figure 1: Weight distribution of pla before and after enzymatic degrada-
tion. Residual amounts of pla after 5 and 67 hr incubation were 40% and
27%, respectively [18].
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this amount is uniformly distributed over the the interval [0,M ]. Then
p (t,K,M) = (1/M) γ (t,M)w (t,M) , and we obtain, from equation (1),

∂w

∂t
(t,M) = −γ (t,M)w (t,M) +

∫ ∞
M

1

K
γ (t,K)w (t,K) dK . (2)

When the initial weight distribution is given in terms of a prescribed func-
tion f (M), the initial condition,

w (0,M) = f (M) , (3)

is imposed on the solution of equation (2). Given an additional condition

w (T,M) = g (M) , (4)

where T > 0 , the inverse problem requires the determination of the degrada-
tion rate γ (t,K) for which the solution of the initial value problem (2)–(3)
also satisfies the condition (4).

A time factor of degradability, such as concentration of enzyme or tem-
perature, affects molecules regardless of their sizes, and we assume γ (t,M)
to be a product of a function of t, σ (t), and a function of M , λ (M):

γ (t,M) = σ (t)λ (M) . (5)

Let τ =
∫ t

0
σ (s) ds , and W (τ,M) = w (t,M) , which results in

∂W

∂τ
= −λ (M)W +

∫ ∞
M

1

K
λ (M)W (τ,K) dK (6)

subject to the initial condition

W (0,M) = f (M) . (7)

The inverse problem is to find the degradation rate λ (M) for which the
solution of the initial value problem (6)–(7) is also satisfied by the final
condition

W (T ,M) = g (M) , (8)
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where

T =

∫ T

0

σ (s) ds . (9)

Watanabe and Kawai [17] developed numerical techniques to solve the
inverse problem with a model proposed previously. We adopt these tech-
niques for the current problem. We introduce the weight distribution before
and after five hours of incubation shown in Figure 1 into the analysis to set
the initial condition (7) and the final condition (8), and solved the inverse
problem numerically for T = 5/24 [18]. Figure 2 shows the graph of the
degradation rate λ (M). Figure 3 shows the results of numerical simulations
for the transition of weight distribution over ten hours of incubation based
on the degradation rate shown in Figure 2. Figure 4 shows the comparison
of the experimental result with a numerical result for the weight distribution
after five hours of incubation. Figure 5 shows the comparison of the experi-
mental result of weight distribution after sixty-seven hours of incubation with
a numerical result for the weight distribution after incubation for 8.5 hours
based on the degradation rate shown in Figure 2.

3 Determination of temporal factor

Since the decrease of degradability was due to evaporation of chloroform, we
assume that σ (t) is an exponential function of time:

σ (t) = e−at+b . (10)

Then

τ =

∫ t

0

σ (s) ds =

∫ t

0

e−as+b ds =
eb

a

(
1− e−at

)
. (11)

Suppose that two sets of data (T1, T1) and (T2, T2) are available:

T1 =

∫ T1

0

σ (s) ds , (12)



3 Determination of temporal factor C463

Figure 2: Degradation rate of pla based on the gpc profiles obtained
before and after incubation for five hours shown in the Figure 1.
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Figure 3: Transition of weight distribution for ten hours based on the degra-
dation rate shown in the Figure 2.
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Figure 4: Weight distribution after five hours of incubation and simulation
for five hours.
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Figure 5: Weight distribution after sixty-seven hours of incubation and
simulation for 8.5 hours.
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T2 =

∫ T2

0

σ (s) ds . (13)

Here we set T1 = T1 = 5/24 day according to the results shown in Figures 2
and 4, and set T2 = 67/24 day and T2 = 8.5/24 day in view of Figure 5.
Equations (10) and (12) lead to T1 =

(
eb/a

)(
1− e−aT1

)
. It follows from (10)

that σ (t) = aT1e−at/
(
1− e−aT1

)
. It also follows from equation (11) that

τ = T1
1− e−at

1− e−aT1
. (14)

Now equation (13) leads to

T2 = T1
1− e−aT2

1− e−aT1
. (15)

Let

h (a) =
1− e−aT2

1− e−aT1
− T2
T1
,

which implies that equation (15) is equivalent to

h (a) = 0 . (16)

We solved equation (16) numerically for the values of parameters: T1 = 5/24 ,
T2 = 67/24 , T1 = T1 , T2 = 8.5/24 , and found an approximate value of the
solution a ≈ 4.259 .

Once we find the time factor σ (t) and the molecular factor λ (M), we
simulate the transition of the weight distribution by solving the initial value
problem (2)–(3). The application of the trapezoidal rule to the integral on
the right-hand side of equation (2) leads to the following system:

dwi

dt
= σ (t) (−λiwi + ∆MFi) , i = 0, 1, 2, . . . , N , (17)

where ∆M = (b− a) /N , Mi = a+ i∆M , λi = λ (Mi) , and

Fi =
1

2
λiwi +

N−1∑
j=i+1

λjwj +
1

2
λNwN .
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The unknown variable wi = wi (t) denotes an approximate value of w (t,Mi).
Here we chose the trapezoidal rule for its convenience. The system (17) is
associated with the initial condition

wi (0) = fi = f (Mi) , i = 0, 1, 2, . . . , N . (18)

We set the value of the parameter N = 4000 , and applied the Adams–
Bashforce–Moulton predictor and corrector in pece mode in conjunction
with Runge–Kutta method [5] with the steplength 1/4800 to solve the ini-
tial value problem (17)–(18) numerically. Figure 6 shows the result of the
numerical simulation for the weight distribution of pla for sixty-seven hours
of incubation.

4 Discussion

During the incubation, pla was dissolved in chloroform. The decrease in
degradation rate was due to evaporation of chloroform. The amount of chlo-
roform decreased exponentially, and we assumed that the degradation rate
was given by the expressions (5) and (10). The degradation rate shown in
Figure 2 was based only on the weight distribution before and after incuba-
tion for five hours. Nevertheless Figure 6 shows an acceptable correspondence
between the experimental result and the numerical result for the weight dis-
tribution after incubation for sixty-seven hours, which justifies the model
with temporally dependent degradation rate (2), (5) and (10).

The time independent model analyzed previously,

∂w

∂t
= −λ (M)w +

∫ ∞
M

2M

K2
λ (M)w (t,K) dK , (19)

was derived under the assumption that the number of degraded molecules of
molecular weight M should be uniformly distributed over the weight inter-
val [0,M ] [12, 13, 17, 18]. Here we derive the endogenous depolymerization
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Figure 6: The weight distribution of pla for sixty-seven hours of incuba-
tion.
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model (2) under the assumption that the total weight of degraded molecules
of molecular weight M should be uniformly distributed over the interval, and
obtained the corresponding time independent model (6) from equation (2).
The degradation rate of the time independent model (6) shown in Figure 2 is
smaller than the degradation rate of the model (19). Nevertheless Figures 3
and 4 justify the time independent model (6).

The degradation rate shown in Figure 2 is an average degradation rate
over five hours. Figure 5 shows that it would only take 8.5 hours with the
average degradation rate to reach the stage after actual incubation for sixty-
seven hours, which shows a loss of degradability after the first five hours of
incubation. Figure 6 shows that molecules broke down rapidly at an early
stage of incubation, and the degradation slowed down quickly as chloroform
was lost by evaporation.

The mathematical models similar to the endogenous depolymerization
model (2) or (6) have been introduced by other authors. Those include
the governing equation for particle-size distribution in simultaneous binary
fragmentation and aggregation reactions or the population balance equa-
tion [6, 8, 10], the equation for mass balance for the polymer subject to ran-
dom chain scission, repolymerization reactions, and chain-end scission [9],
and the integro-partial differential equation of a first-order bond-breaking
process for random scission and a first-order recombination process [11].
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