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Abstract

Australian agriculture is at serious risk from drought, and wa-
ter resource infrastructure and management can mitigate the effects.
The consequences of droughts depend on their intensity, duration and
severity. These variables are correlated and the dependence structure
is here described by copulas. Copulas are multivariate uniform dis-
tributions which allow for the dependence structure to be modelled
independently of the marginal distributions. Trivariate Gaussian and
Gumbel copulas are fitted to the data from a rainfall district in NSW.
We assess the goodness of fit of the data to the different forms using
several criteria. The data are best described by a Gumbel copula and
three parameter Weibull marginal distributions.
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for this article, c© Austral. Mathematical Soc. 2008. Published January 9, 2008. ISSN
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1 Introduction

The Australian Bureau of Agriculture and Resource Economics estimates
that the 2006 drought slashed the national winter cereal crop by 36% and
cost rural Australia around $3.5 billion [11]. Water resource infrastructure
and efficient management are vital to reduce the effects of such droughts.

In hydrological studies, drought is defined as a period with substantially
less rainfall than usual. The main characteristics of a drought are its dura-
tion, intensity and severity and we model the association between them with
a trivariate copula. Although the concept of copulas goes back at least as
far as 1959 [10], most applications in hydrology have been recent [2, 5, 12],
and the only application to drought, of which we are aware, is bivariate [9].
Copulas provide a succinct quantitative characterisation of the distribution
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of drought variables, that can be used for climatic and economic analyses.
We define droughts in Section 2, discuss copulas in Section 3, and fit copulas
to trivariate drought data in Section 4.

2 Definition of drought

The Standardized Precipitation Index (spi) is a common indicator of drought,
which has an advantage of only requiring rainfall data [7]. The calculation
of the spi from monthly rainfall totals for some chosen period (m) follows.
Suppose rt is the rainfall for month t. Calculate a backward moving average
of length m:

yt =
rt + rt−1 + · · ·+ rt−m+1

m
, m ≤ t ,

Then suitable probability distributions are fitted to the {yt} for each calen-
dar month (j). A typical choice is the two parameter Gamma distribution
with cumulative distribution function (cdf) Gj(). The spi (St) is defined
by applying the inverse cdf of the standard Normal distribution to Gj(yt),
that is, St = Φ−1(Gj(yt)) . It follows from this construction that St is desea-
sonalized and that 95% of St are expected to be in a range from −2 to +2.
Droughts are usually defined as periods during which St is consistently below
a threshold of −1 [7]. Since the St is defined monthly, the minimum duration
of a drought is one month and its duration is the number of months until St
increases above the threshold of −1. The corresponding intensity is defined
as the absolute value of the minimum value taken by St over the duration of
the drought. The severity is defined as the area under the threshold over the
duration of the drought.

Figure 1 shows three droughts relative to a threshold−1 of which, drought 1
has the highest intensity (I), drought 2 has the longest duration (D) and
drought 3 is the most severe (severity is the area below −1).
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Figure 1: Definition of drought characteristics.

3 Copulas

A n-copula is a multivariate uniform distribution, and its cumulative distri-
bution function C is a mapping C : [0, 1]n → [0, 1] . Sklar’s Theorem [10]
states that if there exists an n-dimensional cdf with univariate margins
F1, . . . , Fn , then there exists an n-copula C such that

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) = C(u1, . . . , un) (1)

where Fk(xk) = uk for k = 1, . . . , n with Uk ∼ U(0, 1) and Fk is continuous.
Conversely, any choice of copula and Fk is a n-variable cdf. From Equa-
tion (1), we model the univariate marginal distributions Fk and the joint
distribution separately.

The Archimedean family of copulas is commonly used in hydrological
analyses due to its versatility. The symmetric Archimedean n-copula is of
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the form

C(u1, . . . , un) = ϕ−1(ϕ(u1) + · · ·+ ϕ(un)) , (2)

where ϕ is the generator of the copula. A copula of this family is uniquely
defined by its generator function. For example, the bivariate Gumbel copula
C(u, v) = exp[−{(− lnu)θ +(− ln v)θ}1/θ] is defined by its generator function
ϕ(t) = (− ln t)θ . However, for n > 2 , the symmetric copula has the conse-
quence that correlations between any pairs of variables are identical. This is
unrealistic for most applications. A form of asymmetric copula is formed by
nesting symmetric copulas [1, 6] and in the three variable case

C(u1, u2, u3) = C1(C2(u1, u2), u3)

= ϕ−1
1 (ϕ1{ϕ−1

2 [ϕ2(u1) + ϕ2(u2)] + ϕ1(u3)}) . (3)

From Equation (3), the relationship between variables u1 and u2 is described
by copula C2. The result from this relationship is then associated with u3

through the outer copula C1. Note that both C1 and C2 are bivariate copulas
with individual generators ϕ1 and ϕ2 respectively, but unlike u3, C2 does not
have a uniform distribution.

A different, widely used copula is the Gaussian copula which belongs to a
family of elliptical copulas. A multivariate Gaussian copula with n variables
is

C(u1, . . . , un) = Φn(Φ−1(u1), . . . ,Φ
−1(un)) , (4)

where Φn indicates the standard multivariate normal cumulative distribution
function (cdf) with correlation matrix R, and Φ−1 is the inverse cdf of the
standard univariate normal distribution.

Tail dependence is a measure of dependence between extreme values at
both upper and lower tails of a bivariate distribution and is of practical
importance in hydrology. A bivariate copula C has upper tail dependence
λU ∈ (0, 1] if

lim
u→1

C̄(u, u)/(1− u) = λU , (5)
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where C̄ is the complement of the cdf C:

C̄(u, u) = 1− u− u+ C(u, u) .

The bivariate copula has no upper tail dependence if λU = 0 . Similarly,
C has lower tail dependence λL ∈ (0, 1] if

lim
u→0

C(u, u)/u = λL , (6)

and no lower tail dependence if λL = 0 . For example, the parameter ρ
in the bivariate Gaussian copula is the off-diagonal entry in the correlation
matrix R, and the Gaussian copula has no tail dependence when |ρ| < 1 [1],
as it will be in practical applications. In contrast, the bivariate Gumbel
copula has upper tail dependence 2− 21/θ [1].

4 Application

4.1 Study region

Australia is divided into 99 relatively homogenous rainfall districts. We use
monthly precipitation data from District 63 (Central Tablelands) in NSW,
from 1913–2002. The monthly spi(3) series was calculated, using the cal-
culations in Section 2. There were 78 droughts during the 90 year period.
Figure 2(a) shows the location of District 63 and Figure 2(b) shows the dis-
tribution of the time between the end of one drought and the start of another
in terms of months. Correlations between the three drought characteristics
and non-drought time, before or after the drought, are small, and none is sta-
tistically significant at the 5% level. Consequently, time between droughts is
realistically modelled independently of the other three variables.
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Figure 2: (a) New South Wales (NSW) rainfall districts; (b) Histogram of
months between the end of one drought and start of the next.

4.2 Fitting marginal distributions

Drought severity, duration and intensity are fitted with the three parameter
Weibull distribution with cdf

F (x) = 1− exp[−(x− L)k/θ] , L ≤ x ,

where L, θ and k are the threshold, scale and shape parameters respectively.
Table 1 shows the maximum likelihood estimates of the parameters. We
define u, v and w to be the respective severity, duration and intensity after
transformation to uniform distributions. Table 2 displays the correlation
between the drought variables. Figure 3(a)–(c) shows the probability plots
of severity, intensity and duration fitted by the three parameter Weibull
marginals. In Figure 3(c), points are superimposed as the data are restricted
to integers. Overall, the Weibull distribution provides a reasonably good fit
to the drought variables.
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Figure 3: Weibull probability plots of (a) Intensity, (b) Severity, and (c) Du-
ration.
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Table 1: Estimated parameters of Weibull distributions.

Characteristic Threshold Scale Shape
Severity 0.9904 2.463 0.8244
Duration 0.99 0.9375 0.5291
Intensity 0.99 0.688 1.311

Table 2: Correlations of drought variables after transformation to uniform
marginals.

Correlations Pearson Kendall’s tau
u, v 0.958 0.860
u,w 0.859 0.752
v, w 0.710 0.615

4.3 Fitting trivariate copulas

The Gaussian copula is fitted by taking the standard Gaussian inverse cdf
of each element of the (u, v, w) triples and then calculating the three sample
Pearson correlations: ruv = 0.934 , ruw = 0.867 and rvw = 0.695 . Simula-
tions of 100,000 deviates are made using the multinomial Gaussian distribu-
tion function in R [8]. Figure 4 is a contour plot, fitted to the simulated
data, representing the bivariate copula probability density function, with the
historic data shown as points. Figure 5 is a plot of the simulated data from
the copula back-transformed to severity and duration. The 90% percentiles
emphasize the association of the variables in the upper tails. To measure
upper tail dependence, we calculate the Pearson correlation of points falling
above the 90th percentiles (Table 3).

The correlations of the simulated data are close to those of the his-



4 Application C315

(a) severity_uniform

d
u
ra
ti
o
n
_
u
n
if
o
rm

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

(b) severity_uniform

in
te
n
s
it
y
_
u
n
if
o
rm

0.0 0.2 0.4 0.6 0.8 1.0
0
.0

0
.4

0
.8

(c) duration_uniform

in
te
n
s
it
y
_
u
n
if
o
rm

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

Figure 4: Empirical contour plot of (a) u against v, (b) u against w and
(c) v against w from the Gaussian copula
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Figure 5: Plot of back-transformed simulations of severity against duration
from Gaussian copula and 90% quantiles of margins, and historic data.

toric data. However, the upper tail correlations of the simulated data are
fairly weak, especially between the pairs of severity-intensity and duration-
intensity.

The trivariate Gumbel copula is

C1(C2(u, v), w)

= ϕ−1
1 (ϕ1{ϕ−1

2 [ϕ2(u) + ϕ2(v)] + ϕ1(w)})
= exp[−{[(− lnu)θ2 + (− ln v)θ2 ]θ1/θ2 + (− lnw)θ1}1/θ1 ] , (7)

where ϕi(t) = (− ln t)θi , i = 1, 2 , and θi ≥ 1 .

θ1 is the measure of dependence for the pairs (u,w) and (v, w), and θ2 rep-
resents dependence of (u, v). For a proper three dimensional copula to exist,
θ1 ≤ θ2 .

Parameters θ̂1 and θ̂2 were determined using Maximum Likelihood Es-
timates (mle) method to give θ̂1 = 2.18 and θ̂2 = 3.97 . We use a Gibbs
sampler to simulate from this copula [1]. Let U1, . . . , Un have joint distri-
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Table 3: Descriptive statistics of simulations from Gumbel and Gaussian
copulas, u, v and w are severity, duration and intensity after transformation
to uniform distributions.

Variable Correlation Upper tail correl. Proportion
pairs Gumbel Gauss Gumbel Gauss Gumbel Gauss
u, v 0.913 0.928 0.788 0.586 0.0813 0.0746
u,w 0.729 0.856 0.561 0.416 0.0660 0.0633
v, w 0.728 0.678 0.557 0.232 0.0664 0.0455

bution function C. The conditional distribution of Uk given the values of
U1, . . . , Uk−1 is

Ck(uk | u1, . . . , uk−1)

= Pr{Uk ≤ uk | U1 = u1, . . . , Uk−1 = uk−1}

=
∂k−1Ck(u1, . . . , uk)

∂u1 · · · ∂uk−1

/∂k−1Ck−1(u1, . . . , uk−1)

∂u1 · · · ∂uk−1

. (8)

In our case study, u is first simulated from U(0, 1) before we simulate v from
C2(v | u) and w can be obtained from the conditional distribution of C3(w |
u, v). Figure 6 shows the corresponding contour plots of the simulations, of
length 100,000, and the historic data.

Figure 7 shows the plot of the transformed simulations of severity against
duration with respect to the historic data. Table 3 gives correlations of the
simulations from the trivariate Gumbel copula. From Table 3, the overall
correlations are somewhat lower than for the Gaussian copula. However, the
upper tail dependence is captured by the Gumbel copula. This is important
in the case of extreme events where positive correlations between variables
with high values have serious consequences. The proportion of points in that
upper tail is also higher than for the Gaussian copula.
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Figure 6: Empirical contour plot of (a) u against v, (b) u against w and
(c) v against w from a Gumbel copula.
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Figure 7: Plot of back-transformed simulations of severity against duration
from Gumbel copula and 90% quantiles of margins, and historic data.

4.4 Goodness-of-fit tests

We plot probabilities calculated from the fitted copula, against comparable
probabilities from the empirical copula Cn [4] in Figure 8:

Cn(u, v, w) =
1

n

n∑
i=1

I

(
Ri

n+ 1
≤ u,

Si
n+ 1

≤ v,
Ti

n+ 1
≤ w

)
(9)

where I(A) denotes the indicator function of the logical expression A. The
ranks of the ith severity, duration and intensity datum is denoted by Ri,
Si and Ti respectively. The measure of fit is based on how close the points
are to the diagonal line. The Gumbel copula provides a better fit than the
Gaussian copula, because the points are closer to the diagonal. The lower
left steep linear clusters are a consequence of many droughts of one month
duration.
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Figure 8: Plot of values from theoretical Gumbel copula (circles) and the-
oretical Gaussian copula (diamonds) against empirical copula.

5 Conclusions

The times between the end of one drought and the beginning of the next
appear to be independent of the severity, duration and intensity of these
droughts. Hence, drought events can be modelled with a trivariate copula
and an independent distribution of times. The difference between copulas
is striking in the Q-Q plot in Figure 8, but less so in the bivariate contour
plots. The higher tail correlation of the Gumbel copula (Table 3) is apparent
when comparing Figure 6 and Figure 4. A good fit was provided with three
parameter Weibull distributions for margins and a two parameter Gumbel
copula. In general, different forms of distributions can be used for each
margin.

Copulas provide a description of drought characteristics in terms of a
small number of parameters. Changes in these parameters over time and their
relationship with climatic indices, such as the Southern Oscillation Index, can
be investigated. Such analyses may provide evidence of climate change and
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enable drought predictions to be made. Other advantages of copulas are that
economic loss functions can be expressed in terms of the parameters and that
they can be used for simulating future drought scenarios.
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