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A perturbation analysis of the flow of a
Powell–Eyring fluid between coaxial cylinders

M. T. J. Farrugia1 J. J. Shepherd2 A. J. Stacey3

(Received 3 December 2010; revised 19 April 2011)

Abstract

The Powell–Eyring generalised viscous fluid model was developed to
model the flow of viscous inelastic shear thinning fluids, such as polymer
melts and suspensions of solids in non-Newtonian solvents. We consider
the helical flow of a Powell–Eyring fluid between infinitely long coaxial
cylinders. Such a flow is of relevance to a number of applications,
including rheometry. We show that a perturbation approach to the
flow problem yields simple explicit expressions for the fluid velocity
field, which may then be applied to obtain approximations to other
features of the flow.
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1 Introduction

When an incompressible viscous fluid flows in the gap between infinitely long
coaxial cylinders, with an axial fluid velocity superimposed on a transverse
rotational flow, the resulting fluid motion is termed a helical flow. Such
flows are of interest in applications, particularly in modelling the action of
a cup and bob rheometer modified to allow axial flow, in order to carry out
measurements on slurries and other settling mixtures [1]. When the fluid is
Newtonian, such helical flow is well understood. However, when the fluid is
non-Newtonian, so that the constitutive equation linking stress and rate of
shearing is nonlinear, the task of obtaining the velocity profile and associated
fluid properties is considerably more difficult and numerical techniques are
usually employed. While this problem was solved in general terms by Coleman
and Noll [2], their analysis converted a nonlinear boundary value problem to
a nonlinear algebraic one, leaving the details of the solution of either as an
unsolved problem.

In view of the above rheometer application, one situation becomes of signifi-
cance to the present analysis. In many applications, the inter-cylindrical gap
is small, to minimise experimental side effects. In such cases, a perturbation
procedure based on some normalised form of the inter-cylindrical gap as per-
turbation parameter is indicated to solve the nonlinear equations of motion.
This approach has been used to analyse the helical flow of similar fluids [1].

We apply such a perturbation approach to the laminar helical flow of a Powell–
Eyring fluid, a pseudo-plastic fluid model used to represent viscous inelastic
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shear thinning fluids [3, §1.3], such as polymer melts and suspensions. This
analysis will parallel and extend earlier work of Farrugia [4].

2 Governing equations

We consider steady helical flow of an incompressible viscous fluid in the
infinitely long annular region described in cylindrical polar coordinates (r, θ, z)
by R1 6 r 6 R2 , 0 6 θ 6 2π , −∞ 6 z 6 ∞ . The inner cylindrical surface
r = R1 is given a constant angular velocity Ω > 0 , the outer cylinder r = R2
is held stationary, and a given axial flow rate Q > 0 is imposed.

The equations of motion for such a flow are well documented [2]. With the
z-axis taken as vertically down and assuming all quantities exhibit symmetry
about this axis, the velocity field which satisfies the equation of conservation
of mass takes the form

(ur,uθ,uz) = (0, rW(r),V(r)),

for appropriate functions V(r) and W(r). One integration of the momentum
equations yields differential equations for the functions V(r) and W(r):

HV ′(r) = αr+
β

r
, HW ′(r) = −

M

2πr3
. (1)

Here H is the fluid viscosity, M > 0 may be interpreted as the moment per
unit length exerted on the inner cylinder r = R1 , and α and β are constants
of integration to be determined by the application of the boundary conditions
at the cylinder walls.

The non-slip conditions on the inner and outer cylinders yield the boundary
conditions

V(R1) = V(R2) = 0 , W(R1) = Ω , W(R2) = 0 . (2)



2 Governing equations C260

Eliminating H between the equations (1) yields the relationship

V ′(r) = −2π(αr2 + β)r2W ′(r)/M . (3)

Further, V(r) is related to the volume flow rate

Q = 2π

∫R2
R1

rV(r)dr . (4)

We regard the flow rate Q as known, so that (4) becomes a constraint on V(r).

The local rate of shearing, K =
√

[(rW ′)2 + V ′2]/2 , in terms of the gradients
of V and W. The boundary conditions (2) imply that W ′(r) < 0 in all
R1 < r < R2 ; so that |W ′| = −W ′. This, with (3), converts K to

K = −rW ′φ(r,α,β)/
√
2 , where φ =

√
1+ (2π/M)2r2(αr2 + β)2 . (5)

For generalised Newtonian fluids, the viscosity H is a function of the local
rate of shearing K; that is, H = H(K). For the Powell–Eyring fluid, this is

H(K) = A+ B arcsinh(CK)/K , (6)

where A, B and C are positive constants.

Note that putting B = 0 or C = 0 in (6) gives H(K) = A , and the Powell–
Eyring fluid reduces to a Newtonian fluid, of constant viscosity A. Further,
H(K)→ A , in the high shear limit as K→∞ , since arcsinh(CK) = ln(2CK)+
O(K−2) as K → ∞ . Thus, for high shear rates, this fluid is approximately
Newtonian.

Applying (5) and (6) to the second of (1) gives

arcsinh

(
−
C√
2
W ′rφ

)
=

Mφ

2
√
2Bπr2

+
AW ′rφ√
2B

, (7)

a first order nonlinear differential equation for W that can be solved, in
principle, subject to one of the boundary conditions (2).



2 Governing equations C261

We now render the problem (1)–(7) dimensionless, with characteristic radial
distance R, and dimensionless parameter ε measuring the inter-cylindrical
gap width:

R = (R1 + R2)/2 , ε = (R2 − R1)/(R1 + R2) ,

while the dimensionless constants a, b, σ and radial variable s are defined by

a = −2πεR3α/M , b = 2πεRβ/M , σ2 = b/a , r = Rs ,

respectively. Dimensionless forms of V ,W,K and H, denoted by v(s), w(s),
κ(s) and η(s), are defined by

v = ∆V(Rs), w = ∆RW(Rs), κ =
√
2∆RK(Rs), η = H(K(Rs))/A ,

where ∆ = 2πAR/(Mε), while dimensionless parameters γ, δ, q and ω are
defined by

γ =
CMε

2
√
2πAR2

, δ =
2
√
2πBR2

Mε
, q =

2AQ

Mε2R
, ω =

2πAR2Ω

Mε
.

Note that γ and δ derive from the fluid parameters A, B and C, while q and ω
are related to the axial flow rate Q and inner cylinder angular velocity Ω.

In terms of the dimensionless quantities above, the flow problem in the inter-
cylindrical gap, s1 = 1 − ε 6 s 6 1 + ε = s2 , now comprises the nonlinear
differential equation for w(s),

arcsinh
(
−γsψ(s,a,σ)w ′) = sψ(s,a,σ)

δε

(
εw ′ + 1/s3

)
, (8)

where ψ(s,a,σ) =
√
1+ (sa/ε)2(s2 − σ2)2 , with the linked equation for v(s),

v ′ = as2(s2 − σ2)w ′/ε , (9)

subject to the boundary conditions

v(s1) = v(s2) = 0 , w(s1) = ω , w(s2) = 0 . (10)
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Note that equations (10) imply the weaker conditions∫ s2
s1

v ′(s)ds = 0 and

∫ s2
s1

w ′(s)ds = −ω . (11)

The condition (4) becomes, on integrating by parts, and using (10) and (11),∫ s2
s1

(s2 − σ2)v ′(s)ds = −εq . (12)

The local rate of shearing, given by (5) and the constitutive equation (6),
may also be converted to the dimensionless forms

κ(s) = −sw ′(s)ψ(s,a,σ) and η(κ) = 1+ δ arcsinh(γκ)/κ ,

respectively.

For given values of a, σ, γ, δ, ε and q, the differential equations (8) and (9)
may be integrated subject to any pair of the boundary conditions (10) involving
both v and w, to obtain the functions v(s) and w(s). Imposition of the full
set of conditions (10), together with the flow condition (12) yields a set of
three nonlinear equations of the form

fi(a,σ,γ, δ,ω,q, ε) = 0 , i = 1, 2, 3 .

In principle, any two of these may be solved for a and σ in terms of the other
quantities. Substitution of these values in the third equation then yields an
equation of the form

F(γ, δ,ω,q, ε) = 0 . (13)

This equation defines a relationship linking γ, δ and ω, with q and ε present
as parameters. Equivalently, an analogous relationship links Ω with M. This
relationship, sometimes termed the Reiner–Riwlin equation, is fundamental
to this flow for the given fluid [5, p.231]. If γ and δ are assumed given (that
is, the flow occurs under constant torque conditions—typical of rheometer
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applications), then the relationship (13) determines ω in terms of q and ε.
Thus, the quantities a and σ may be viewed as functions of q and ε. Conse-
quently, the functions w and v described above may be regarded as functions
of q and ε as well as s.

In general, the nonlinearity of the component equations above renders this
process well-nigh impossible. However, in one case of interest in applications,
solutions may be obtained by approximate methods. For a large class of
helical flows, the inter-cylindrical gap is small, and thus, so is ε (typical values
of R1 = 0.024 , R2 = 0.025 , give ε = 0.0204), while the ε-dependence of q
may be predicted; so that perturbation methods based on ε→ 0 apply.

3 Perturbation analysis for flow in a narrow

gap

We now employ a perturbation procedure based on the limit ε→ 0 , typified
by a small inter-cylindrical gap, to construct approximate expressions for
v(s) and w(s) and the constants a and σ. We estimate the orders of terms
in Equations (8)–(12) as ε → 0 , by first estimating such orders for the
constants a, σ, γ, δ and ω. To do this, we return to the dimensional
equations (1) to (6). Given Ω is independent of ε, the boundary condition (2)
implies that W ′(r) is O(ε−1) over the inter-cylindrical gap. With (5), this
implies that K is O(ε−1) there, and (6) gives the result that H(K) is O(1).
Applying these estimates to the second of (1), we have that M is O(ε−1).
These estimates of W ′ and M would seem to make (3) imply that V ′ is O(1)
throughout the gap. However, if we argue that an appropriate physically real
estimate for V is to be O(1) in the gap, an estimate of V ′ as O(ε−1) seems
suitable. On the other hand, we know, from the boundary condition (2) that
V ′ = 0 at a point interior to the gap. This must come from αr2+β vanishing
there; and the only estimate that will give consistency between orders of
magnitudes in each side of (3) is that α and β are both O(ε−2). This gives V
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as O(1) throughout the gap; and then (4) gives Q as O(ε).

The estimates obtained above then give a, b, σ, γ, δ, q, and ω as O(1) con-
stants, and v(s) and w(s) as O(1) functions throughout the inter-cylindrical
gap, with v ′(s) and w ′(s) being O(ε−1). Since s2 − σ2 is O(ε), ψ(s,a,σ)
is O(1), while the orders in (9) balance.

The unknown quantities in this problem are the functions w(s) and v(s)
and the constants a and σ. We now propose that these be represented as
perturbation expansions in terms of the (small) parameter ε that, based on
the estimates above, take the form

w ′(s) = ε−1w ′
0(s) + f1(ε)w

′
1(s) + · · · , (14)

v ′(s) = ε−1v ′0(s) + g1(ε)v
′
1(s) + · · · , (15)

a = a0 + ν1(ε)a1 + · · · , (16)

σ = σ0 + µ1(ε)σ1 + · · · , (17)

where εf1(ε), εg1(ε),ν1(ε),µ1(ε) → 0 as ε → 0 . While we recognise that
higher order terms are involved in (14)–(17), we only use the two term
representations. Note that (14) and (15) define expansions for the derivatives
of w and v in terms of derivatives of the coefficient functions w0,w1, . . .
and v0, v1, . . . .

In the analysis below we, by substituting (14)–(17) into the equations (8)–(9)
and (11)–(12) and seeking a balance of orders of terms as ε → 0 , obtain
expressions for the constants f1(ε), g1(ε), ν1(ε) and µ1(ε), as well as the
functions w ′

0(s), w
′
1(s), v

′
0(s) and v ′1(s). Integration of these last, subject to

the boundary conditions (10) at the outer boundary s = s2 , then yields expres-
sions for w0(s), w1(s), v0(s) and v1(s), and hence, via (14) and (15), two-term
approximations to w(s) and v(s) that satisfy the boundary conditions (10)
at s = s2 .

Substituting the expansions (14)–(17) into the differential equation (8) and
considering terms as ε→ 0 , we have the leading order term on the left-hand
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side of (8) as
arcsinh(−γsψ0w

′
0/ε), (18)

where ψ0 = ψ(s,a0,σ0), while the right hand side is

sψ0

δε
(w ′

0 + 1/s
3). (19)

Since arcsinh(x) = ln(2x)+O(x−2) as x→∞, we deduce that (18) is O(ln ε),
while (19) is O(ε−1). Since there can be no match between these, we choose

w ′
0 + 1/s

3 = 0 , (20)

and expect that (18) matches the right hand side of (8) at a higher level.

Solving (20), subject to the boundary conditions (10) at s = s2 , we then get

w0 = (1/s2 − 1/s22)/2 .

Substitution of the expansion above into (9) and using (20) gives the leading
order term as

εv ′0 = −a0(s
2 − σ20)/s .

This gives the leading order term of (15); and substituting this into the first
equation of (11) and (12) and taking leading order terms gives

σ0 = 1 , a0 = 3q/8 ,

so that

v ′0 = −
3q

8ε

(
s−

1

s

)
.

Integrating subject to the outer boundary condition (10) gives

v0 =
3q

8ε

{
1

2
(s22 − s

2) − ln(s2/s)

}
.
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Now consider the second (first order correction) terms in the expansions (14)–
(17). From (20) and (14), w ′ is O(ε−1); so that, on substituting (14) into (8)
and expanding for large arguments, we obtain (8) as

arcsinh(−γsψw ′) = ln(−2γsψ0w
′
0/ε) + · · ·

= sψ0f1(ε)w
′
1/δ+ · · · .

Choosing
f1(ε) = ln(ε) (21)

allows both both sides to be of matching order as ε→ 0 , so that

w ′
1 =

δ

sψ0 ln(ε)
ln

(
2γψ0

εs2

)
; (22)

and applying (10) at s = s2 gives

w1(s) = −
δ

ln(ε)

∫ s2
s

1

uψ0
ln

(
2γψ0

εu2

)
du .

Substituting (14)–(17) into (9), and taking leading order terms gives

g1(ε)v
′
1 =

a0s
2

ε
(s2 − σ20)f1(ε)w

′
1 −

ν1(ε)a1
ε2s

(s2 − σ20).

Noting (21), we see that these terms may be matched if we choose

g1(ε) = ln(ε), ν1(ε) = ε ln(ε),

and then

v ′1 =

(
3q

8ε
s2w ′

1 −
a1

εs

)
(s2 − 1). (23)

Applying (23) to the first of (11) gives, on incorporating (22),

a1 = −
9qδ

ε3 ln(ε)

∫ s2
s1

s(s2 − 1)

ψ0
ln

(
2γψ0

εs2

)
ds ; (24)
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an expression for a1 which can be evaluated numerically. Integrating (23)
subject to the boundary conditions at s = s2 gives

v1(s) = −

∫ s2
s

(
39

8ε
u2w ′

1(u) −
a1

εu

)
(u2 − 1)du ,

where w ′
1 and a1 are given by (22) and (24) respectively.

Applying (9) to the first of (11), substituting the expansions for σ and w ′

into the result and using the values for σ0, w
′
0 and w ′

1 obtained above leads,
on considering the remaining leading order terms, to the condition

ln(ε)

∫ s2
s1

s2(s2 − 1)w ′
1 ds = −

2µ1(ε)σ1
ε

∫ s2
s1

s−1 ds , (25)

and a balance of orders as ε→ 0 is achieved by choosing

µ1(ε) = ε
3 ln(ε).

Then, (25) gives, on using (22) and (24),

σ1 = a1/(36q),

which gives σ1 in terms of a1.

We thus arrive at the two term approximations

w(s) = ε−1w0(s) + ln(ε)w1(s) + · · · , (26)

v(s) = ε−1v0(s) + ln(ε)v1(s) + · · · . (27)

These expansions satisfy the outer boundary condition (10) at s = s2 , to the
level of accuracy considered. Evaluation of the right hand side of (27) at s = s1
and careful estimation of the two terms shows their sum to be O(ε2 ln(ε));
that is, this approximation satisfies the first of (10), the inner boundary
condition, to the level of approximation considered.

Applying the third of (10) to (26) gives

ω = ε−1w0(s1) + ln(ε)w1(s1) + · · · ,
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Figure 1: Radial (left) and axial (right) velocity profiles, for A = 1.2 ,
B = 0.8 , C = 0.9 , Q = 0.0001 , M = 5 , R1 = 0.024 and R2 = 0.025 . Dashed
lines show only the first term of the expansions.

which is a two term approximate relationship linking ω and the parameters ε,
δ, γ and q. This is an approximate form of the Reiner–Riwlin equation for
this fluid and flow.

4 Discussion

The expressions (26)–(27) are explicit, readily evaluated approximations to
the functions w(s) and v(s) and the constants a and σ for small ε. Thus they
may be used to obtain approximate expressions for the significant features
of this helical flow. In particular, they may be used to represent the fluid
velocity field (sw(s), v(s)). This is shown in Figure 1. It is apparent that the
second term in (26) makes little difference to sw(s); but for v(s), there is
some overall reduction, arising from the non-Newtonian nature of this fluid.
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These approximations may also be used to obtain approximate expressions
for the viscosity profile η(κ) and the rate of shearing, κ, as functions of s.
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