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Abstract

Detailed microscale simulation is typically too computationally ex-
pensive for the long time simulations necessary to explore macroscale
dynamics. Projective integration uses bursts of the microscale simula-
tor, on microscale time steps, and then computes an approximation to
the system over a macroscale time step by extrapolation. Projective
integration has the potential to be an effective method to compute the
long time dynamic behaviour of multiscale systems. However, many
multiscale systems are significantly influenced by noise. By a maximum
likelihood estimation, we fit a linear stochastic differential equation
to short bursts of data. The analytic solution of the linear stochastic
differential equation then estimates the solution over a macroscale,
projective integration, time step. We explore how the noise affects the
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projective integration in two different methods. Monte Carlo simula-
tion suggests design parameters offering stability and accuracy for the
algorithms. The algorithms developed here may be applied to compute
the long time dynamic behaviour of multiscale systems with noise and
to exploit parallel computation.
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1 Introduction

Projective integration is used to extrapolate the long time dynamic behaviour
of mutiscale systems from small time steps [9, 7]. Many applications of
projective integration are to systems based upon microscopic simulators with
inherently stochastic or chaotic dynamics [4, e.g.]. Thus in many applica-
tions the projective integration is influenced by apparent noise [11, 5, e.g.].
Calderon [4] and Givon et al. [8] considered aspects of projective integration
for such systems. Here we focus on and explore just the one aspect of how
the noise affects the projective integration.

Two methods are investigated by Monte Carlo simulation. The methods
explored here may be applied to compute the long time dynamic behaviour of
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multiscale systems with noise. Future considerations will include developing
methods suitable for reducing simulation times with parallel computing [8].

We contribute to the understanding of projective integration by applying it
to the class of stochastic processes governed by statistically homogeneous
stochastic differential equations of the form

dX = a(X)dt+ b(X)dW , (1)

where the drift a(X) and the volatility b(X) are smooth deterministic functions,
and where all noises can be gathered into the one Wiener process W(t,ω).
Section 2 introduces basic projective integration for such sdes. The great
simplification of this exploration is that we suppose there are no hidden fast
dynamics: the process X(t,ω) is the only dynamical variable. Thus we do not
address any issues associated with ‘lifting’ and ‘restriction’ of fast variables
in a fast-slow stochastic system [9, e.g.]. Instead we address, on their own,
the issues of accuracy and stability of projective integration methods applied
to the many multiple paths of a stochastic process.

The first result of Section 2 is that the basic projective integration scheme
often has significant bad predictions. Consequently, Section 3 introduces a
predictor-corrector version of projective integration. Example simulations
provide evidence that such a predictor-corrector version may be an effective
method for macroscale simulations.

2 A stochastic model underlies projective

integration

We explore the projective integration of the general stochastic differential
equation (1). Suppose there is some ‘unknowable’ microscale system that
generates realisations of a stochastic process X(t,ω) that is both of interest
and observable: for example, the stochastic process X(t,ω) could be the
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population count in a complicated particle/agent simulation. Crucially, also
assume that the realisations are very expensive to compute (or, potentially, to
perform experimentally). Thus to simulate over long times we use projective
integration: execute a burst of the microscale system to generate a short
time series of the process X(t,ω); extrapolate from this short burst over a
macroscale time step; then restart the simulator at the latter time and repeat.
The challenge for a stochastic system is that the extrapolation is strongly
sensitive to the noise in the microscopic burst.

In overview, a projective integration method for the stochastic system is
the following recursive algorithm. Choose a burst time interval δt and a
projective integration time step ∆t.

• Suppose the system is at state Xn at time tn; that is, X(tn,ω) = Xn .

• Execute the expensive microscale simulator to generate a particular
realisation X(t,ω) for a burst tn 6 t 6 t ′n = tn + δt starting from
X(tn,ω) = Xn and ending at X ′

n = X(t ′n,ω).

• We fit the burst with the linear Itô sde model

dX = (a0 + a1X)dt+ (b0 + b1X)dW , (2)

for constants ai and bi. Then, from the burst data, the maximum
likelihood estimator of Ait-Sahalia et al. [1, 2, 3] for the sde (2) [private
communication] estimates the four drift and volatility coefficients in the
sde (2).

• Kloeden and Platen [10] give the analytic solution of the linear sde (2)
as the following: given the initial condition X(t ′n,ω) = X ′

n ,

let ϕ(t,ω) = exp
[
(a1 − b

2
1/2)t+ b1W(t,ω)

]
,

then X(2)(t,ω) = ϕ×
[
X ′
n

ϕ(t ′n)
+ (a0 − b0b1)

∫ t
t ′n

dt

ϕ
+ b0

∫ t
t ′n

dW

ϕ

]
.

(3)
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Using the maximum likelihood estimated coefficients from the burst,
the solution (3) then steps across a macroscale time to the numerical
estimate

Xn+1(ω) = X(2)(tn+1,ω) at time tn+1 = tn + δt+ ∆t . (4)

• Repeat the above for further macroscale time steps.

Others, such as Siettos et al. [11, §II.C] and Erban et al. [5, §5], fit such a
burst with the near trivial Ito sde model

dX = a0 dt+ b0 dW , for constant a0 and b0, (5)

and so take a projective integration time step of

X̂n+1 = X
′
n + a0∆t+ b0∆W for some ∆W ∼ N(0,∆t); (6)

They generally set ∆W = 0 (its maximum likelihood value). In an analogue of
fitting the model (2), Gear et al. [6, §3] fitted polynomials to the signal X(t)
to project in time, but they did not explore errors induced by stochastic
fluctuations. In simulating stochastic chemical reactions, Calderon [4] also
used Ait-Sahalia’s maximum likelihood estimator to fit the sde (2) to bursts
of data. However, in contrast to our approach, Calderon used only the
deterministic part of (2) to predict the future dynamics.

The above, Euler-like, projective integration method, and the predictor-
corrector method in Section 3, were applied to simulations of the Itô sde

dX = −Xdt+ 0.03(1+ X)dW , X(0,ω) = 1 . (7)

This specific sde is used throughout this article as an example. The only error
is due to the nature of fitting a model to the limited amount of information
available in the stochastic bursts. Although to be precise, the stochastic
process to which we apply the projective integration methods is an O

(
dt
)

Milstein scheme that approximates the sde (7) using a micro-time step dt,



2 A stochastic model underlies projective integration C666

X
(t

,ω
)

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time t

Figure 1: three realisations of the Euler-like projective integration of Sec-
tion 2 applied to the microscale sde (7) simulated with micro-time step
dt = 0.001 . In the projective integration: bursts (blue) lasted δt = 0.1 ; and
using (3) the macroscale time step (red) in (4) was ∆t = 0.4 .

typically we selected the micro-step dt = 0.001 . When we refer to the sde (7),
we actually mean the Milstein process. The difference should be negligible
for our purposes.

Figure 1 shows three realisations of the projective integration applied to
the sde (7). They appear to be evolving towards the stochastic equilibrium
about X = 0 . However, the algorithm uncomfortably often ‘jumps’ in the
projective step due to poor estimation, from the burst, of the coefficients in
the sde (2).

Such jumps induced by poor estimation constitute a severe limitation. Figure 2
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Figure 2: histogram of errors in one step of the projective integration (4)
of Section 2 (the extreme bins contain all larger and smaller errors): the
mean = −0.76, the standard deviation = 10.34, the median = 0.02 and the
inter-quartile range = 0.19 . The microscale sde (7) was simulated as in
Figure 1.

plots a histogram of the errors after one step of the method applied to the
sde (7). In 300 realisations, a significant number had large errors showing up
as fat tails in the histogram as shown by the errors grouped into the extreme
leftmost and rightmost bins.

We systematically explored a range of parameter values by changing the
macroscale step ∆t, the length of the bursts δt = r∆t , and the microscale
sampling interval dt = ρ δt . Then 300 realisations for each of 100 parameter
combinations leads to Figure 3: plotted are isosurfaces of the median absolute
error, mae = median

{
|X

(4)
1 (ω)−X(7)(t1,ω)|

}
, where X

(4)
1 (ω) and X(7)(t1,ω)
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(errorsEulerB03err.u3d) Figure 3: isosurfaces of a one
step error in projective Euler-like
integration (4): the surfaces are
for median absolute error mae =
0.03, 0.06, 0.09, 0.12 (in order blue
to red). Roughly, the error fits
mae ≈ 0.39ρ0.08(1− r)1.1(∆t)0.73.
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are respectively the one step numerical estimate and analytic solution of the
sde (7). This error appears to behave acceptably. However, our choice of
median error hides any fat tails in errors: such fat tails are generally seen in
this simple implementation of projective integration.

3 Predictor-corrector stochastic projective

integration

Figure 1 suggests that the most significantly sensitive part of the projective
algorithm of Section 2 is the estimation of the drift coefficients ai in the
presence of noise. The volatility coefficients bi seem less problematic. One way
to get better estimates of the drift, inspired by predictor-corrector methods,
is to do the following predictor-corrector scheme. The method is analogous
to that proposed by Gear et al. [6, 7, e.g.]. The difference is in our use of an
sde model for the coarse time step. Here

• execute a first burst of the microscale simulator (blue in Figure 4);

• take a simple tentative predictor projective step using (6);

• execute a second burst of the microscale simulator starting from X̂n+1
at time tn+1 (green in Figure 4);

• use Ait-Sahalia’s [1, 2, 3] maximum likelihood estimator for the sde (2)
[private communication] to fit the sde (2) to the composite data of
both bursts together;

• then take a corrected projective step using the solution (3) (red in
Figure 4).

Figure 4 shows three realisations of one example. They appear to be much
more satisfactory than the Euler-like scheme of the previous section. Figure 5
supports the marked increase in accuracy of the predictor-corrector method:
the histogram of errors shows an overall smaller error and no fat tails in
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Figure 4: three realisations of the ‘predictor-corrector’ projective integration
of Section 3 applied to the microscale sde (7) with micro-time step dt = 0.001 .
In the projective integration: initial bursts (blue) lasted δt = 0.1 ; second
bursts (green) were started following the simple prediction (6); and lastly
using (3) the macroscale time step (red) in (4) was ∆t = 0.4 .

the distribution of errors. The lack of fat tails suggests that this predictor-
corrector method should be much more reliable.

How does the error of the method vary with design parameters? Figure 6
plots isosurfaces of the median absolute errors for a range of parameters. A
reasonable fit to the data in this domain is

mae ≈ 0.067ρ0.03(1− r)2.1(∆t)0.27. (8)

The almost absent dependence upon the micro-scale time steps, via ρ, indicates
that the resolution of the data sampling within a burst in not particularly
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Figure 5: histogram of errors in one step of the ‘predictor-corrector’
projective integration of Section 3: the mean = −0.005, the standard
deviation = 0.040, the median = −0.004 and the interquartile range = 0.052 .
The microscale sde (7) was simulated as in Figure 4.

important. The (1− r)2 factor reaffirms that the smaller the fraction of the
projection step the better—not surprisingly. The error also depends on the
time step ∆t. But recall that the sde here is in the class fitted exactly by the
model sde (2); thus in principle there need be no error in an integration step
over an arbitrarily large interval. In general applications of the algorithm,
the sde of interest will not be in the class (2)—the class will be a local
approximation—and so there will be additional error. This article does not
explore the error caused by such local modelling. Here we focus on errors
induced by the stochastic nature of the process.
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Figure 6: isosurfaces of a one
step error in projective predictor-
corrector integration: the sur-
faces are for median absolute er-
ror mae = 0.01, 0.02, 0.03, 0.04 (in
order blue to red, obtained from
300 realisations). Roughly, the
error fits mae ≈ 0.067ρ0.03(1 −
r)2.1(∆t)0.27.
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Figure 7: isosurfaces of the, one
step, error ratio rms /mae in pro-
jective predictor-corrector integra-
tion: the surfaces are for ratios
2, 6, 20 (in order blue to red).
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Figure 6 continues to use the median absolute error as a measure of error. The
reason is that this predictor-corrector algorithm is not always reliable. For
some design parameters the predictions do have fat tails, although apparently
not as obese as those for the simple Euler-like projective method. Figure 7
plots isosurfaces that indicate parameter regimes of good and poor behaviour.
The isosurfaces are those of the ratio between the root mean square error
(rms) of the 300 realisations of the error to the median absolute error (mae).
Recall that for a normal distribution the ratio σ/mae = 1.4826 . Thus we
identify roughly several parameter regimes: above the blue surface in Figure 7,
the regime of rms /mae < 2 , the predictions should be reliable as we expect
the distribution of errors to be like those in Figure 5; below the blue surface
and above the cyan surface, 2 < rms /mae < 6 , there will be increasing
numbers of poor predictions; below the cyan surface 6 < rms /mae and thus
we expect fat tails, tending to obese tails below the red surface. Avoiding
bad outlier predictions is the major concern of this article.

Recall that Figure 6 and its approximation (8) suggest accuracy improves when
reducing the time step ∆t. However, Figure 7 indicates that we should not take
too small a time step ∆t as otherwise rare bad predictions become significantly
common: the distribution of errors possesses ‘fat tails’ for small ∆t.

Figure 7 reaffirms that there is little point in recording more data from the
micro-scale as there is only a weak trend favouring small ρ.

4 Conclusion

This research focussed upon some design parameters of the two numerical
algorithms in this empirical exploration. We kept the noise level fixed at
volatility circa 0.03–0.06 because this level of noise is significant, without
being dominant. By applying the algorithms to the sde (7), which is in
the class of the model sde (2), we focus on errors induced by the stochastic
nature of the processes—there is no error in the functional form of the sde
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underlying the projective integration.

The predictor-corrector algorithm appears to be reasonably accurate and
reasonably robust to the presence of noise when compared with Euler-like
projective integration. However, Section 3 highlights that stochastic projection
suffers from ‘fat tailed’ errors if one uses macroscale time steps that are too
small. In applications to general sdes (1), the time step cannot be too large
either as the error in approximating the sde by the model (2) will be large.
In general applications we will have to be careful about the time steps for
stochastic projective integration.

The next step is to confirm these empirical Monte Carlo simulation results by
stochastic Taylor expansions.
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