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Abstract

The thermal capacitance of a fabric is increased when the fab-
ric is embedded with a phase change material (pcm). This is due
to utilizing the latent heat release or absorption of the pcm during
its phase change process. This article presents a modified finite el-
ement method algorithm based on the Galerkin weak formulation
with quadratic shape functions. The modification correctly models
the phase change process. A diver’s dry suit made from four types
of garments, 1-layer Thinsulate, 1-layer pcm, and 2-layer and 4-layer
Thinsulate-pcm composites, are investigated using the modified finite
element method. Temperature profiles and heat fluxes are compared
with and are shown to be superior to results obtained using a finite
difference procedure.
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1 Introduction

A Phase Change Material (pcm) is a type of polymer substance. It performs
like a conventional thermal energy storage in its solid or liquid phase, that is,
its temperature rises as it absorbs heat and vice versa. However, when a pcm
reaches the temperature at which it changes phase (its melting point if from
solid to liquid phase, or fusion temperature if from liquid to solid phase) it
absorbs or releases large amounts of heat without a significant rise or drop in
temperature [6]. Compared to conventional thermal storage materials such as
rock and water, pcms generally have the capacity to store about 3 to 14 times
more heat per unit volume within the human comfort range of 20 to 30◦C.

One of the applications of pcms is in the clothing industry. For example,
pcm may be used in specialized military clothing, athletic clothing or pro-
tective clothing for fire-fighters [1, 4, 5, 8, 7]. In this application, the pcms
are encapsulated in either microscopic or macroscopic balls of heat resistant
plastic. When embedded into a fabric, they increase the thermal capacitance
of the fabric by utilizing the latent heat release or absorption during the
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phase change process to keep a wearer warmer or cooler over an extended
period.

For the design of new enhanced garments, it is necessary to model the
thermal performance of pcm embedded fabrics. Considering the size ratio of
a garment surface to its thickness is roughly 100:1, Gear et al. [2] modeled the
phase change process as a one dimensional heat flow in a continuum using a
finite difference scheme. Both Nuckols [8] and Gear et al. [2] modeled a diver’s
dry suit made of a 2-layer fabric composed from a foam enhanced with micro-
encapsulated pcm C18 paraffin (octadecane) in Thermosorb1 and a micro-
fibrous insulating material called Thinsulate2. The temperature profiles and
the final phase change positions predicted by the numerical results of Gear
et al. [2] agreed well with the results of Nuckols.

Using the same mathematical model as in Gear et al. [2], this article
presents a modified finite element method (fem) based on the Galerkin
weighted residual weak formulation with quadratic shape functions. The
modification correctly models the phase change process. The implementa-
tion of the fem procedure is used to solve for the transient heat transfer
through the thickness of a diver dry suit made from the same fabrics as
those used by Nuckols [8] and Gear et al. [2].

2 Governing equations

The one dimensional heat equation given by Hill and Dewynn [3] is

∂h

∂t
=

∂

∂x

(
k(u)

∂u

∂x

)
, (1)

where u = u(x, t) is the temperature [◦C], h(u) is the enthalpy [J m−3], and
k = k(u) is the thermal conductivity [W m−1 ◦C−1].

1Thermosorb is a trade name used by Frisby Technologies of Clemmons, NC.
2Thinsulate is a trademark of the 3M Corporation.
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The thermal conductivity of a material k(u) is a constant if the material
remains in a single phase during heat transfer. When temperature reaches
to the fusion point, uf , of the material, the phase of the material changes
and the value of k(u) also changes. We let ks and kl be the constant thermal
conductivities of the material in solid and liquid phases, respectively.

The enthalpy h(u) is essentially the heat content per unit volume. Defin-
ing the enthalpy relative to 0◦C, h(u) represents the quantity of heat required
to raise a unit volume from 0◦C to u, and is expressed by h(u) = ρ

∫ u
0
c(u′) du′

where ρ is the density and c(u) is the specific heat. Let cs and cl be constant
specific heats in the solid and liquid phases, respectively.

When the pcm changes phase from liquid to solid at the fusion tempera-
ture uf (or vice versa), it releases (or absorbs) the latent heat L [J kg−1] and
results in a sharp fall (or jump) in enthalpy of amount ρL [3]. The relation-
ship between enthalpy and temperature is shown in Figure 1. Figure 1 shows
that the enthalpy is not a function of temperature, as enthalpy can be any
value in the range [ρcsuf , ρ(csuf+L)] at the fusion temperature uf . However,
any given enthalpy corresponds to only one temperature, therefore, temper-
ature is a function of enthalpy. At the beginning of heat transfer, a pcm is
in a single phase state, say in the liquid phase for the case of a diver dry
suit. Given the initial temperature profile u(0) and hence the initial enthalpy
profile h(0), the enthalpy at the next time step t0 + ∆t is then determined
using equations (11) and (15) (see Section 3), and the temperature profile at
t0 + ∆t is

u =


h/(ρcs), if h < ρcsuf ,

uf , if ρcsuf ≤ h < ρ(csuf + L),

uf + (h− ρ(csuf + L)) /(ρcl), if h ≥ ρ(csuf + L).

(2)

To model heat transfer through the thickness of a diver’s dry suit, the
boundary conditions at the water side and the skin side of the garment need
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Figure 1: The relationship between enthalpy h and temperature u.

to be determined. At the water boundary x = 0, Newton cooling is assumed:

k(u)
∂u

∂x
(0, t) = P [u(0, t)− uA] , (3)

where P is the surface heat transfer coefficient [W m−2 ◦K−1] and uA is the
ambient temperature (water temperature).

At the skin-contact boundary x = l, since we are interested in determining
the rate of heat loss in order to estimate the thermal protection period (how
long before the wearer starts to experience a constant heat loss after being
exposed to cold water), a constant skin temperature over an extended time
period is assumed, hence

u(l, t) = uskin . (4)

With these boundary conditions, we calculate the heat flux at the skin-
contact boundary from t = 0 onwards. When the calculated heat flux ap-
proaches a constant, the fabric reaches its steady state of heat transfer. The
time used in the transient period is defined as the thermal protection time
of the material. Note that the assumed boundary condition is conservative
for calculating the thermal protection time. In reality, there is an air gap
between the fabric and the diver’s skin, which presents a further delay due to
the heat conduction between the skin-contact boundary of the fabric and the
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diver’s skin. Thus, the definition of the thermal protection period provides
a conservative estimate.

If the diver continues to be exposed to the icy water environment after the
thermal protection time is exceeded, hypothermia will eventually occur. The
time from the fabric approaching to the steady state to the commencement of
hypothermia depends upon factors related mainly to the physical condition
of the diver. Once hypothermia starts, the boundary condition of the fabric
at the skin-contact side will no longer be a constant. The heat transfer
will become an unsteady process depending on the rate of the decline of the
diver’s body temperature. This unsteady heat transfer process is not within
the scope of the present study.

3 The Galerkin finite element discretization

We employ the first order Euler’s scheme for time stepping to re-write equa-
tion (1):

h(n+1)(u)− h(n)(u)

∆t
=

∂

∂x

(
k(u)

∂u(n)

∂x

)
, (5)

with the initial condition u(x, 0) = u(0)(x) = uskin and the time step ∆t =
tn+1 − tn. To ensure the stability of the solution using the explicit forward
difference scheme, a restriction of max{ ∆t

(∆x)2
ks

ρcs
, ∆t

(∆x)2
kl

ρcl
} < 1

2
is applied on

the time step ∆t [2].

We then apply the weighted residual method [9] to equation (5) and
integrate by parts the second derivative term in the resulting equation to
obtain∫

l

H(n+1)(u)Wi(x) dx =

[
k(u)

∂u(n)

∂x
Wi(x)

]x=l

x=0

−
∫
l

k(u)
∂u(n)

∂x

∂Wi(x)

∂x
dx (6)



3 The Galerkin finite element discretization C445

where

H(n+1)(u) =
h(n+1)(u)− h(n)(u)

∆t

is the rate of change of the enthalpy; l is the thickness of the garment and
Wi (i = 1, 2, . . .) are the arbitrary weighting functions equal in number to
the number of equations.

We now impose the essential boundary condition, equation (4), on x = l
and use the natural boundary condition, equation (3), in equation (6) to give∫

l

H(n+1)(u)Wi(x) dx

= −
∫
l

k(u)
∂u(n)

∂x

∂Wi(x)

∂x
dx− P

[
u(n)(0)Wi(0)− uAWi(0)

]
. (7)

The region 0 ≤ x ≤ l is discretized into N three node 1D elements of
equal length ∆x = l/N , giving a total of 2N + 1 nodes. The finite element
process seeks the solution of the unknown function u(x, t) in the approximate
form

u(n)(x) ≈
2N+1∑
j=1

Nj(x)u
(n)
j , (8)

where u
(n)
j are the nodal values of the temperature at the nth time step.

Nj(x) are prescribed piecewise quadratic shape functions and Nj(xi) = 1 for
i = j and Nj(xi) = 0 for i 6= j.

We approximate the unknown function H(n+1)(u) in a similar fashion:

H(n+1)(u) ≈
2N+1∑
j=1

Nj(x)H
(n+1)
j , (9)

where H
(n+1)
j are the nodal values of the enthalpy rate H(u, t) at the (n+1)th

time step.
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Figure 2: Illustration of the local coordinate system ξ and the global coor-
dinate system x on a general element e.

In the Galerkin finite element method, the weighting functions take the
form of the shape functions

Wi = Ni , i = 1, 2, . . . , 2N + 1 . (10)

Substituting equations (8), (9) and (10) into equation (7) yields the set
of discretized equations

Ei,jH
(n+1)
j = Ki,ju

(n)
j + fj , i, j = 1, 2, . . . , 2N + 1 , (11)

where

Ki,j = −
∫
l

k(u)
∂Ni(x)

∂x

∂Nj(x)

∂x
dx− PNi(0)Nj(0) ,

fj = PuANj(0) and Ei,j =

∫
l

Ni(x)Nj(x) dx .

For effective implementation of the finite element scheme, we use a local
coordinate system ξ on a general element e (the element number). The origin
of the local coordinate system ξ coincides with the centre of the element, e, as
shown in Figure 2. The relationship between the global and local coordinate
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systems is ξ = 2
∆x

(x − x2
e) and ∂x

∂ξ
= ∆x

2
. The quadratic shape functions

defined by the local coordinate system ξ are

N1(ξ) =
ξ(ξ − 1)

2
, N2(ξ) = 1− ξ2, N3(ξ) =

ξ(ξ + 1)

2
.

Equation (11) is now written over the domain of a general element e as

Ee
i,jH

(n+1)
j = Ke

i,ju
(n)
j + f ej , i, j = 1, 2, 3 ,

where

Ke
i,j =

−
2

∆x

∫ 1

−1
k(u)∂Ni(ξ)

∂ξ

∂Nj(ξ)

∂ξ
dξ − PNi(−1)Nj(−1) , e = 1 ,

− 2
∆x

∫ 1

−1
k(u)∂Ni(ξ)

∂ξ

∂Nj(ξ)

∂ξ
dξ , e 6= 1 ,

(12)

f ej =

{
PuANj(−1) , e = 1 ,
~0 , e 6= 1 ,

and Ee
i,j =

∆x

2

∫ 1

−1

Ni(ξ)Nj(ξ) dξ .

When the element e is in liquid phase, we substitute k(u) = kl in equa-
tion (12), and similarly substitute k(u) = ks for solid phase. When the
element is in the phase change state,

Ke
i,j = − 2

∆x

∫ 0

−1

[
ks + (kl − ks)(ξ + 1)

]∂Ni(ξ)

∂ξ

∂Nj(ξ)

∂ξ
dξ

− 2kl
∆x

∫ 1

0

∂Ni(ξ)

∂ξ

∂Nj(ξ)

∂ξ
dξ , (13)

if the change is in the first half of the element. Otherwise

Ke
i,j = − 2kl

∆x

∫ 0

−1

∂Ni(ξ)

∂ξ

∂Nj(ξ)

∂ξ
dξ

− 2

∆x

∫ 1

0

[
ks + (kl − ks)ξ

]∂Ni(ξ)

∂ξ

∂Nj(ξ)

∂ξ
dξ . (14)
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The modifications given by equations (13) and (14) ensure the correct phys-
ical modeling of the phase change.

Using the local coordinate system, we only need to calculate the local
matrices Ke

i,j (for each phase) and Ee
i,j and the local vector f ej once, then

assemble all the elements to form the global matrices Ki,j and Ei,j and the

global vector fj and hence solve equation (11) for H
(n+1)
j . The enthalpy at

t+ ∆t is
h

(n+1)
j = ∆tH

(n+1)
j + h

(n)
j . (15)

Subsequently the temperature profile u(n+1) is determined using equation (2).

4 Results and discussions

The finite element algorithm in Section 3 was coded in Maple to investigate
the thermal performance of a diver’s dry suit using four different garments
made from two materials, Thinsulate and the pcm encapsulated material in
Thermosorb (as used by Gear et al. [2]). The material properties are given
in Table 1. The four types of garments considered here are

1. 1-layer Thinsulate (100%T);

2. 1-layer pcm (100%pcm);

3. 2-layer composite (40%T - 60%pcm); and

4. 4-layer composite (20%T - 30%pcm - 20%T - 30%pcm).

All the garments have a constant thickness 0.0127 m, which is discretized into
10 elements with a total of 21 nodal points. The initial temperature of the
garments is 32◦C. It is reasonable to assume that the diver’s skin temperature
be constant at 32◦C. Typical values of surface heat transfer coefficient, for
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Figure 3: Temperature profiles plotted at 0.5 minute intervals for 30 min-
utes for 1-layer Thinsulate.

icy water, range from 100 to 1000 [2]. A value of P = 600 W m−2 ◦C−1 is
used in the present investigation. The pcm is initially all liquid.

Figure 3 shows the temperature profiles of 1-layer Thinsulate garment at
0.5 minute intervals for 30 minutes after the diver and suit are immersed in
water of 4◦C. The horizontal axis represents the garment thickness and the
vertical axis represents the temperature distribution along the thickness of
the garment. It shows clearly that the temperature profile drops rapidly and
approaches the steady state within the first 2 minutes. Figure 4 shows the
temperature profile for the pcm only garment. There is considerable longer
thermal protection for the 1-layer pcm garment. Figures 5 and 6 present
the temperature profiles of the 2-layer composite and 4-layer composite gar-
ments at the same time interval and over the same time period, respectively.
Comparing with Figures 3 and 4, the rate of the temperature drop of the
composites is slightly higher than the 1-layer pcm; however, it is signifi-
cantly lower than the 1-layer Thinsulate. The results shown in Figures 3
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Figure 4: Temperature profiles plotted at 0.5 minute intervals for 30 min-
utes for 1-layer pcm.
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Figure 5: Temperature profiles plotted at 0.5 minute intervals for 30 min-
utes for the 2-layer composite.
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Figure 6: Temperature profiles plotted at 0.5 minute intervals for 30 min-
utes for the 4-layer composite.

Table 1: Thermal properties of Thinsulate and pcm [2].
pcm solid pcm liquid Thinsulate

Specific heat [J kg−1 ◦K−1] 1483 1620 1129.68
Therm. cond. [W m−1 ◦K−1] 0.03478 0.03798 0.03286

Density [kg m−3] 121.43 52.86
Latent heat [J kg−1] 99424.87

Fusion Temp. ◦C 28.3333
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to 6 indicate that the 1-layer pcm performs the best. However, in reality
pcm alone cannot be directly used in clothing. It has to be encapsulated
into microscopic or macroscopic balls and packed between layers of fabrics in
the form of a composite. The 1-layer pcm garment analysis presented here
is for the purpose of comparison to the Thinsulate and composites, and also
provides the upper limit of the numerical results.

Figure 7 gives a comparison of the heat fluxes at the skin-contact bound-
ary against time between the four garments. It shows that the heat flux of
the 1-layer Thinsulate approaches to a constant value within the first 3 min-
utes, while 1-layer pcm takes about 30 minutes. For the two composites,
the times for their heat flux at the skin-contact boundary approaching to
a constant value are almost the same and at about 26 minutes. However,
within the first 12 minutes, the heat flux value at the skin-contact boundary
of the 4-layer composite is less than the 2-layer composite at any a given
time. This means the 4-layer composite protects the wearer better since the
heat loss is less with the 4-layer composite suit than the 2-layer composite
suit. A summary of the results is given in Table 2, in which the time to
reach the steady state is defined as the time when the increase of the heat
flux is less than 10−2W m−2 min−1. These results are very close to the re-
sults reported by Gear et al. [2]. The location of the moving boundary (the
phase change position), agrees with both the finite difference method (fdm)
of Gear et al. [2] and the results of Nuckols [8]. The difference between the
fdm and fem results is that the fdm result (of 100 grid points) produces a
stepped curve in heat flux plots for garments containing pcm; however, the
step distance could be reduced by half each time the grid is doubled; whereas
the fem results give smooth heat flux curves though only a total of 21 nodes
are used. Regarding the computational accuracy, if linear shape functions
were used, the system of algebraic equations obtained by fem would be the
same as that by fdm. Since the present fem algorithm uses quadratic shape
functions, the accuracy of the fem results is higher than that of the fdm
results.



5 Conclusions C453

Table 2: Comparison of time, heat flux and phase change position at steady
state obtained from Finite Difference and Finite Element Methods.

Garment types Finite Difference Method
Time Heat flux Phase change

(mins) (W m−2) position (mm)
1-layer Thinsulate 3 72.136 NA
1-layer pcm 30 77.252 10.897
2-layer Thin./pcm (40% — 60% ) 25 75.495 10.855

Garment types Finite Element Method
Time Heat flux Phase change

(mins) (W m−2) position (mm)
1-layer Thinsulate 2.5 72.447 NA
1-layer pcm 30 77.502 10.900
2-layer Thin./pcm (40% — 60% ) 26 75.714 10.869

5 Conclusions

1. The 1-layer pcm material gives the longest thermal protection up to
approximately 30 minutes, which is more than ten times longer than
the conventional 1-layer Thinsulate fabric;

2. Compared with the 1-layer Thinsulate, the Thinsulate-pcm compos-
ites have significantly improved thermal protection, up to 26 minutes;
however, doubling the composite layering does not seem to enhance the
protection further.

3. The fem results (using the modified scheme) agree well with the fdm
results. The fem results also show improved accuracy with much fewer
nodes.

4. Beyond the thermal protection time, the value of the heat flux at the
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Figure 7: Heat flux at the skin boundary against time for 4-layer and 2-layer
composites, 1-layer pcm and 1-layer Thinsulate.

skin-contact boundary is the lowest for the 1-layer Thinsulate and high-
est for the 1-layer pcm. Hence for an extended period, Thinsulate-only
fabric would be optimal as its rate of heat loss (measured by the heat
flux) is the least beyond its transient heat transfer state.
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