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Abstract

Numerical and computational methods are developed for the Large
Eddy Simulation of atmospheric flows on a sphere with a spectral quasi-
geostrophic model. The subgrid scales of motion are parameterised us-
ing a net eddy viscosity that is derived from a high resolution reference
Direct Numerical Simulation with 504 zonal and total wavenumbers
or 1536 × 768 grid points (longitude by latitude). Simulations are
undertaken for a wide range of truncation wavenumbers to determine
the influence of resolution on the net eddy viscosity. A universal scaling
law for these coefficients is established for application to large eddy
simulations of more general geophysical flows.
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1 Introduction

High Reynolds number atmospheric flows cover a vast range of scales making
it unfeasible to adequately resolve all scales of motion. In geophysical fluid
dynamics one therefore resorts to Large Eddy Simulation (les) in which
the large eddies are resolved on a computational grid and the remaining
small scales are represented by a subgrid parameterisation. The first such
parameterisation was the ad hoc deterministic Smagorinsky eddy viscosity
model [6], in which the subgrid scale dissipation was related to the local strain
rate via a specified parameter. An ad hoc stochastic version of this model
was subsequently proposed by Leith [5]. Frederiksen and Davies [3] studied
barotropic atmospheric flows and used turbulence closure theory to develop
self consistent eddy viscosity and stochastic backscatter parameterisations
with no tuning parameters needed. Frederiksen and Kepert [4] subsequently
developed an essentially equivalent stochastic modelling approach, in which
the eddy viscosity and stochastic backscatter terms are determined from a
reference Direct Numerical Simulation (dns) data set, in an effort to widen
the applicability of the closure. In this context, a dns is understood to be a
highly resolved simulation with a wavenumber dependent bare viscosity to
account for the unresolved scales of motion.
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The aim of the present study is to search for universal scaling laws of the
wavenumber dependent viscosity by employing the subgrid modelling method
of Frederiksen and Kepert [4]. This would make the parameterisations more
generally applicable and remove the need to determine them from a reference
dns. Section 2 summarises the quasigeostrophic potential vorticity equation
(qgpve) [1, 7] used in our simulations of a turbulent baroclinic atmospheric
flow. Section 3 presents the les version of the qgpve, along with the details
of the stochastic modelling of the subgrid scales. Various less are then
undertaken in Section 4 to investigate how the coefficients of the subgrid
scale model change with resolution; a universal scaling of these coefficients is
proposed. In Section 5 assess the self consistency of the scaling with the bare
viscosity in the dns.

2 Two-level spectral quasigeostrophic

equations

For our study of subgrid scale parameterisations we employ the two level
quasigeostrophic model of Frederiksen [1]. The qgpve is derived on the
basis of hydrostatic and approximate geostrophic balance. Here, the vorticity
is represented at two discrete vertical levels, with j = 1 representing the
upper level at 250hPa (z ≈ 10 km), and j = 2 the lower level at 750hPa
(z ≈ 2.5 km). The system is non-dimensionalised by the radius of the Earth
(a = 6371 km) as a length scale and the inverse of the Earth’s angular velocity
(Ω = 7.292× 10−5 s−1) as a time scale.

The qgpve is spectrally discretised by expanding the field variables in spheri-
cal harmonics with zonal (longitudinal) wavenumberm and the total wavenum-
ber n. Note the latitudinal (meridional) wavenumber is n−m . The evolution
equation for the reduced potential vorticity spectral coefficients (qjmn) is [1]

∂qjmn
∂t

= i
∑
p,q

∑
r,s

Kmprnqsψ
j
−pqq

j
−rs − iωmnζ

j
mn − α

jζjmn + κn(q̃
j
mn − q

j
mn)
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−

2∑
l=1

Djl
0 (m,n)qjmn , (1)

where
qjmn = ζjmn + (−1)jFL

(
ψ1mn −ψ

2
mn

)
. (2)

Here, ζjmn = −n(n + 1)ψjmn are the spectral coefficients of the vorticity
and ψjmn the streamfunction coefficients at level j. Also, FL is a layer coupling
parameter, which is inversely proportional to the potential temperature differ-
ence between the two levels, and related to the Rossby radius of deformation
by rRos = 1/

√
2FL . In (1) the summations are over the triangular truncated

wavenumber set

T = {p,q, r, s | −T 6 p 6 T , |p| 6 q 6 T ,

−T 6 r 6 T , |r| 6 s 6 T }, (3)

with T the dns truncation wavenumber. The Rossby wave frequency ωmn =
−Bm/(n(n+1)), where B = 2 with our non-dimensionalisation, and Kmprnqs are
the interaction coefficients detailed by Frederiksen and Kepert [4]. Linear
drag is specified by αj and the flow is relaxed towards q̃jmn with relaxation
parameter κn.

In (1), the term Djl
0 (m,n)qjmn represents the contribution of the unresolved

scales of motion to the overall tendency. The linear operator, Djl
0 (m,n),

is written in general matrix anisotropic notation; however, in the present
calculations it has the isotropic form

Djl
0 (m,n) = νjl0 (n)n(n+ 1), (4)

where n(n + 1) is the discrete form of the Laplacian operator. Also, the
isotropic wavenumber dependent bare viscosity is

νjl0 (n) = δ
jl νjj0 (T)

(n
T

)ρj0
, (5)

where δjl is the Kronecker delta function, which ensures the off-diagonal
elements of νjl0 (n) are zero. Here, νjj0 (T) is the value of the diagonal elements
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at the truncation wavenumber and the power ρj0 controls the steepness of νjj0 (n).
This means that ν0, with elements νjl0 , and hence D0, with elements Djl

0 , are
isotropic diagonal matrices.

3 Stochastic subgrid scale model

The les has reduced resolution compared with the dns. The les wavenumbers
are confined to the set

R = {p,q, r, s | −TR 6 p 6 TR , |p| 6 q 6 TR ,

−TR 6 r 6 TR , |r| 6 s 6 TR}, (6)

where TR is the les truncation wavenumber and TR < T . The subgrid
wavenumber set can then be defined as S = T − R . A stochastic subgrid
scale model is presented that can replicate the dns statistics of the large
scales whilst truncating the model back from wavenumber set T to R.

We find that successful less result from subgrid parameterisations that
are inhomogeneous in the vertical and homogeneous but anisotropic in the
horizontal. This allows the subgrid model to be applied locally in wavenumber
space with coupling only in the vertical direction. This is consistent with the
Quasi-diagonal Direct Interaction Approximation closure of Frederiksen [2]
and the subgrid modelling study of Zidikheri and Frederiksen [7].

To facilitate a discussion on the flow decomposition, for a given wavenumber
pair we let q equal the transpose of (q1mn,q2mn). In this vector notation

qt(t) = qR
t (t) + qS

t (t), (7)

where qt is the tendency (or time derivative) of q. Also, qR
t is the tendency

of the resolved scales where all triad interactions involve wavenumbers less
than TR, and consequently no parameterisation is required. For the remaining
subgrid tendency, qS

t , at least one wavenumber component involved in the triad
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interactions is greater than TR. The subgrid tendency is further decomposed
such that

qS
t (t) = f + q̂S

t (t) , (8)

where f ≡ qS
t is the time averaged subgrid tendency, and q̂S

t is the fluctuating
component. In the present study the values of f are determined from the dns,
and q̂S

t is modelled using the following approach.

The fluctuating component of the subgrid tendency is represented by

q̂S
t (t) = −Dd q̂(t) + f̂(t) , (9)

where Dd is the subgrid drain dissipation matrix, q̂ is the fluctuating compo-
nent of q, and f̂ is a random forcing vector. As the present simulations have
two vertical levels, Dd is a time independent 2× 2 matrix, and f̂ is a time
dependent two element column vector. Dd is determined by post-multiplying
both sides of (9) by q̂†(t0), integrating over the decorrelation period τ, and
ensemble averaging to remove the contribution of the stochastic backscatter
term f̂ . Rearranging for Dd produces

Dd = −

〈∫ t
t0

q̂S
t (σ)q̂

†(t0)dσ

〉 〈∫ t
t0

q̂(σ)q̂†(t0)dσ

〉−1

, (10)

where σ is an integration variable, and † denotes the Hermitian conjugate
for vectors and matrices. The angled brackets denote ensemble averaging,
with each ensemble member determined by shifting the initial time t0 and
the final time t = t0 + τ forward by one time step. τ is chosen to capture the
average subgrid contribution to the resolved scales.

The model for f̂ is determined by calculating the non-linear noise covariance
matrix given by Fb = Fb + F†

b, where Fb =
〈
f̂(t) q̂†(t)

〉
. By again post-

multiplying both sides of (9) by q̂†(t0), and adding the conjugate transpose
of (9) pre-multipled by q̂(t0), we obtain the Lyapunov or balance equation

〈
q̂S
t (t)q̂

†(t)
〉
+
〈
q̂(t)q̂S†

t (t)
〉
= −Dd

〈
q̂(t)q̂†(t)

〉
−
〈
q̂(t)q̂†(t)

〉
Dd

† +Fb ,

(11)
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and Fb is determined given that Dd has been previously calculated. In
general, the noise term f̂ may be coloured, but we find that once Fb has been
calculated from (11), it is sufficient to model f̂ as the white noise process〈
f̂(t) f̂†(t′)

〉
= Fb δ(t−t

′). An eigenvalue decomposition of Fb then produces

a stochastic model for f̂ .

However, we adopt a deterministic expression for the backscatter. We define
the backscatter and net linear operators by

Db = −Fb

〈
q̂(t) q̂†(t)

〉−1
, (12)

Dn = Dd + Db , (13)

respectively. The subgrid tendency is then modelled by q̂S
t (t) = −Dn q̂(t).

The equation solved for the anisotropic les is

∂qjmn
∂t

= i
∑
p,q

∑
r,s

Kmprnqsψ
j
−pqq

j
−rs − iωmnζ

j
mn − α

jζjmn + κn(q̃
j
mn − q

j
mn)

−

2∑
l=1

Djl
0 (m,n)qjmn −

2∑
l=1

Djl
n(m,n)q̂lmn + f̄

j
mn , (14)

solved over the wavenumber set R. In the anisotropic case each wavenumber
pair has a unique Dn. For the isotropic les, Dn is averaged over the zonal
wavenumbers m, so that it is only a function of the total wavenumbers n.
The net eddy viscosity νn = Dn/(n(n+ 1)).

4 Scaling of the net eddy viscosity

Various dnss and less are undertaken to identify how νn changes with
resolution. The highest resolution dns presented herein has a truncation
wavenumber of T = 504 , and is denoted by T504. This is equivalent to
1536 longitudinal and 768 latitudinal grid points, or a grid point every
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0.234 degrees. Along the equator, the distance between grid points is approxi-
mately 26 km. The time step size for this simulation is ∆t = 112 seconds. All
simulations are driven toward q̃jmn, by the relaxation parameter κn = 10−6 s−1

for n > 15 and κn = 0 otherwise. The climate q̃jmn consists of a large westerly
jet in the mid latitudes of each hemisphere, with q̃jmn non-zero only for m = 0
(that is, a purely zonal jet). Further details on the structure of q̃jmn was
provided by Zidikheri and Frederiksen [7]. To be representative of atmospheric
flows, the layer coupling parameter in si units is FL = 2.5× 10−12 m−2, with
rRos = 4.47×105 m and a wavelength of 2πrRos = 2.81×106 m. The associated
non-dimensionalised Rossby wavenumber is kRos = a/rRos ≈ 14 . All simula-
tions presented within resolve the large scale Rossby waves as kRos < TR < T .

The anisotropic net eddy viscosity coefficients are calculated from the dns data
using (13) with τ = 24∆t . For the T504 data set truncated back to TR = 63 ,
the real component of the anisotropic net eddy viscosity ν11n (m,n), is illus-
trated in Figure 1. The eddy viscosity component ν11n (m,n) generally increase
with n and have only a weak dependence on m, and hence are approximately
isotropic. The component ν22n (m,n) has a similar form to ν11n (m,n), but
typically 80% of its magnitude. The cross elements, ν12n (n) and ν21n (n), are
negligible in comparison. In all cases, the mean subgrid tendency f̄ is also
found to be negligible. Each of these observations reinforce the use of a
diagonal isotropic bare viscosity in (5). For the remainder of the article, we
concentrate on the properties of ν11n (m,n).

The self similarity of the net eddy viscosity coefficients is most clearly illus-
trated by the isotropised profiles. The eddy viscosity component ν11n (m,n) is
isotropised with ν11n (n) shown in Figure 2(a), and exhibits a cusp like shape
approaching TR. The T504 dns data set is also truncated back to TR = 126
and TR = 252 . The resulting profiles of ν11n (n) are illustrated in Figure 2(a),
along with the bare viscosity profile ν110 (n). From this figure it is clear that
the maximum value of ν11n (n) decreases with TR, with the bare viscosity ν110 (n)
having the smallest maximum value. This makes sense because as additional
scales of motion are resolved by the grid, there are fewer subgrid scales that
must be accounted for by the parameterisation, and the level of eddy viscosity



4 Scaling of the net eddy viscosity C2794 Scaling of the net eddy viscosity 7

 0  10  20  30  40  50  60
 0

 10

 20

 30

 40

 50

 60

10-9

10-8

10-7

10-6

10-5

10-4

10-3

n

m

|Re [ν11
n (m, n)] |

Figure 1: Net eddy viscosity subgrid coefficients |Re [ν11
n (m, n)] | required to

truncate the T504 data set back to an les data set with TR = 63.
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is isotropised with ν11
n (n) shown in Fig. 2(a), and exhibits a cusp like shape

approaching TR. The T504 dns data set is also truncated back to TR = 126
and TR = 252. The resulting profiles of ν11

n (n) are illustrated in Fig. 2(a),
along with the bare viscosity profile ν11

0 (n). From this figure it is clear
that the maximum value of ν11

n (n) decreases with TR, with the bare vis-
cosity ν11

0 (n) having the smallest maximum value. This makes sense be-
cause as additional scales of motion are resolved by the grid, there are
fewer subgrid scales that must be accounted for by the parameterisation,
and the level of eddy viscosity should be reduced. Each of the four profiles is
non-dimensionalised by its value at the truncation wavenumber denoted by
ν11

n (TR) (or ν11
0 (T ) in the case of the bare viscosity) and plotted in Fig. 2(b)

against n/TR (or n/T for the bare viscosity). This figure accentuates that
with this non-dimensionalisation, the steepness of the eddy viscosity profiles
increases with the truncation wavenumber.

The changes in magnitude and slope of the net eddy viscosity profiles
are quantified by fitting the curves to a power law function. Using a least
squares approach, the ν11

n (n) profiles are fit to the function

ν11
n (n) = ν11

n (TR)

(
n

TR

)ρ1
n

, (15)

where ν11
n (TR) is the value at truncation, and ρ1

n is the exponent. For the
T504 dns truncated back to TR = 252, 126, and 63, the associated values

Figure 1: Net eddy viscosity subgrid coefficients |Re
[
ν11n (m,n)

]
| required

to truncate the T504 data set back to an les data set with TR = 63 .

should be reduced. Each of the four profiles is non-dimensionalised by its
value at the truncation wavenumber denoted by ν11n (TR) (or ν110 (T) in the case
of the bare viscosity) and plotted in Figure 2(b) against n/TR (or n/T for the
bare viscosity). This figure accentuates that with this non-dimensionalisation,
the steepness of the eddy viscosity profiles increases with the truncation
wavenumber.

The changes in magnitude and slope of the net eddy viscosity profiles are
quantified by fitting the curves to a power law function. Using a least squares
approach, the ν11n (n) profiles are fit to the function

ν11n (n) = ν
11
n (TR)

(
n

TR

)ρ1n
, (15)

where ν11n (TR) is the value at truncation, and ρ1n is the exponent. For the T504
dns truncated back to TR = 252 , 126 and 63, the associated values of ν11n (TR)
and ρ1n are plotted as upward pointing triangles in Figure 3(a) and Figure 3(b)
respectively. The component ν11n (TR) is shown to decrease with TR, and



4 Scaling of the net eddy viscosity C2804 Scaling of the net eddy viscosity 8

 0

 2

 4

 6

 8

 0  100  200  300  400  500

n

ν
1
1

n
(n

)
×

10
5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

n/TR

TR = 63
TR = 126
TR = 252

ν11
0

ν
1
1

n
(n

)/
ν

1
1

n
(T

R
)

(a) (b)

Figure 2: Isotropic net eddy viscosity subgrid coefficients derived from the
T504 dns data set: (a) ν11

n (n); and (b) non-dimensionalised such that
ν11

n (n)/ν11
n (TR) is plotted against n/TR. The legend in (b) also represents

the data in (a). The bare viscosity ν11
0 is also included in these figures.

of ν11
n (TR) and ρ1

n are plotted as upward pointing triangles in Fig 3(a) and
Fig 3(b) respectively. The component ν11

n (TR) is shown to decrease with TR,
and ρ1

n increases with TR. This means that as more scales are resolved the
net eddy viscosity profiles are reducing in magnitude and becoming steeper,
which is consistent with the results in Fig. 2.

Additional dns calculations are performed to confirm the functional de-
pendence of ν11

n (TR) and ρ1
n on the les truncation wavenumber TR. The new

dnss are truncated at T = 252 and T = 126, with these data sets referred
to as T252 and T126 respectively. The ν0 coefficients of the T252 data set
are estimated from νn of T504 truncated back to TR = 252. Likewise the ν0

coefficients of the T126 data set are estimated from νn of T504 truncated
back to TR = 126. The T252 dns is in turn truncated back to TR = 126, 63,
and 31, with the associated values of ν11

n (TR), and ρ1
n plotted as downward

pointing triangles in Fig. 3. The T126 dns is truncated back to several levels
between TR = 31 and 63, with the values of ν11

n (TR), and ρ1
n plotted as open

circles. A least squares regression line is determined for the ν11
n (TR) data

points in Fig 3(a) producing the functional dependence

ν11
n (TR) = 0.006T−1

R , (16)

with a correlation coefficient of 0.997. A least squares regression line is also
calculated for the ρ1

n data points in Fig 3(b) producing the function

ρ1
n(TR) = 1.7T 0.6

R , (17)

with a correlation coefficient of 0.960. The values of ν11
0 and ρ1

0 for the T504
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ρ1n increases with TR. This means that as more scales are resolved the net
eddy viscosity profiles are reducing in magnitude and becoming steeper, which
is consistent with the results in Figure 2.

Additional dns calculations are performed to confirm the functional depen-
dence of ν11n (TR) and ρ1n on the les truncation wavenumber TR. The new
dnss are truncated at T = 252 and T = 126 , with these data sets referred
to as T252 and T126 respectively. The ν0 coefficients of the T252 data set
are estimated from νn of T504 truncated back to TR = 252 . Likewise the
ν0 coefficients of the T126 data set are estimated from νn of T504 truncated
back to TR = 126 . The T252 dns is in turn truncated back to TR = 126 , 63
and 31, with the associated values of ν11n (TR), and ρ1n plotted as downward
pointing triangles in Figure 3. The T126 dns is truncated back to several
levels between TR = 31 and 63, with the values of ν11n (TR), and ρ1n plotted as
open circles. A least squares regression line is determined for the ν11n (TR) data
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5 Self consistency of the bare viscosity

Just as the bare viscosity ν0 represents the contribution of the unresolved
scales in the dns to the tendency over the wavenumber set T, the net eddy
viscosity νn represents the contribution of the subgrid scales S to the ten-
dency of the les resolved scales R. It is, therefore, proposed that the scaling
observed for νn, is also applicable to ν0. It was shown previously in Fig. 3
that νn and ν0 have consistent scaling. The sensitivity of this result is
assessed below. As an additional check, dnss are run with ν0 profiles gen-
erated using the scaling functions. The resulting spectrum are compared to
the spectrum from the highest resolution T504 case.

Thus far the scaling laws for νn have been identified by running a series
of dnss with a prescribed ν0 truncated at various TR. The sensitivity of
the results is now determined by running additional dnss with varying ν0.
Specifically the T126 dns is run with three different bare viscosity profiles,
each of which are truncated back to several levels between TR = 31 and 126.
In each case ν0 is calculated according to (5), with νjj

0 (TR) fixed and equal to
νjj

n (TR) of the T504 dns truncated back to TR = 126. Three different values
of ρj

0 are used: ρj
0 = 29, consistent with the previous T126 dns; ρj

0 = 6, a
typical value used in atmospheric dns studies; and ρj

0 = 78, chosen to illus-
trate the impact of an excessively large value. The impact of the ν0 profiles
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scales in the dns to the tendency over the wavenumber set T, the net eddy
viscosity νn represents the contribution of the subgrid scales S to the ten-
dency of the les resolved scales R. It is, therefore, proposed that the scaling
observed for νn, is also applicable to ν0. It was shown previously in Fig. 3
that νn and ν0 have consistent scaling. The sensitivity of this result is
assessed below. As an additional check, dnss are run with ν0 profiles gen-
erated using the scaling functions. The resulting spectrum are compared to
the spectrum from the highest resolution T504 case.

Thus far the scaling laws for νn have been identified by running a series
of dnss with a prescribed ν0 truncated at various TR. The sensitivity of
the results is now determined by running additional dnss with varying ν0.
Specifically the T126 dns is run with three different bare viscosity profiles,
each of which are truncated back to several levels between TR = 31 and 126.
In each case ν0 is calculated according to (5), with νjj

0 (TR) fixed and equal to
νjj

n (TR) of the T504 dns truncated back to TR = 126. Three different values
of ρj

0 are used: ρj
0 = 29, consistent with the previous T126 dns; ρj

0 = 6, a
typical value used in atmospheric dns studies; and ρj

0 = 78, chosen to illus-
trate the impact of an excessively large value. The impact of the ν0 profiles

(a) (b)

Figure 3: The scaling of the subgrid coefficients properties: (a) ν11n (TR); and
(b) ρ1n, determined from three dns data sets T504, T252 and T126 truncated
back to various values of TR. The legend in (b) represents the data in (a).

points in Figure 3(a) producing the functional dependence

ν11n (TR) = 0.006T
−1
R , (16)

with a correlation coefficient of 0.997. A least squares regression line is also
calculated for the ρ1n data points in Figure 3(b) producing the function

ρ1n(TR) = 1.7T
0.6
R , (17)

with a correlation coefficient of 0.960. The values of ν110 and ρ10 for the T504
dns are also plotted on Figure 3(a) and Figure 3(b) respectively as solid
squares, and follow the trend line.

5 Self consistency of the bare viscosity

Just as the bare viscosity ν0 represents the contribution of the unresolved
scales in the dns to the tendency over the wavenumber set T, the net eddy
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Figure 4: Using the T126 dns data set, the sensitivity to ρ1
0 of the subgrid

coefficients properties: (a) ν11
n (TR); and (b) ρ1

n, for various values of TR.

on ν11
n (TR) at various TR is first assessed. The trend line from Fig. 3(a) is

included in Fig. 4(a), but this time plotted on a linear scale with TR/T the
independent variable. The dns calculations are repeated with ρj

0 = 29, 6
and 78, and the resulting values of ν11

n (TR) added to Fig. 4(a). The values of
ν11

n (TR) appear to deviate from each other for TR/T > 0.5. The same is true
regarding the agreement of ρ1

n determined from the various dnss in Fig. 4(b).
In general, the closer TR is to T the greater influence ν0 has on νn. In close
proximity to T , however, ν11

n (TR) approaches zero regardless of ν0. This is
because there are no subgrid scales at TR = T , and by definition νn = 0.
To ensure the limiting case at T = TR and the prescribed ν0 had minimal
impact on the scaling functions describing νn, the regression lines in Fig. 3
were calculated using only the data points with TR/T ≤ 0.5.

We now verify that a lower resolution dns with ν0 defined using the scal-
ing laws can replicate the statistics of a higher resolution dns. A comparison
is made between the time and m averaged kinetic energy spectrum on level 1
(E1

K) resulting from the T504, T252 and T126 dnss. The ν0 profiles for the
T252 and T126 dns are determined using the scaling functions (16) and (17)
in conjunction with (5). Figure 5(a) illustrates good agreement between the
E1

K from each of the dnss. Importantly the energies in the low wavenumber
large scales of motion agree. In the higher wavenumbers, the lower resolution
cases decay slightly faster than the T504 case. The implications of using the
incorrect scaling for ν0 is illustrated with application to the T126 dns. Fig-
ure 5(b) illustrates E1

K resulting from the T126 dnss with ρj
0 = 29, 6 and 78.

The spectrum labelled ρj
0 = 29 is the same as the T126 dns spectrum in

Fig 5(a). The spectrum labelled ρj
0 = 78 produces a turn up at the end of

the spectrum due to the net eddy viscosity dropping off more rapidly. The
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on ν11
n (TR) at various TR is first assessed. The trend line from Fig. 3(a) is

included in Fig. 4(a), but this time plotted on a linear scale with TR/T the
independent variable. The dns calculations are repeated with ρj

0 = 29, 6
and 78, and the resulting values of ν11

n (TR) added to Fig. 4(a). The values of
ν11

n (TR) appear to deviate from each other for TR/T > 0.5. The same is true
regarding the agreement of ρ1

n determined from the various dnss in Fig. 4(b).
In general, the closer TR is to T the greater influence ν0 has on νn. In close
proximity to T , however, ν11

n (TR) approaches zero regardless of ν0. This is
because there are no subgrid scales at TR = T , and by definition νn = 0.
To ensure the limiting case at T = TR and the prescribed ν0 had minimal
impact on the scaling functions describing νn, the regression lines in Fig. 3
were calculated using only the data points with TR/T ≤ 0.5.

We now verify that a lower resolution dns with ν0 defined using the scal-
ing laws can replicate the statistics of a higher resolution dns. A comparison
is made between the time and m averaged kinetic energy spectrum on level 1
(E1

K) resulting from the T504, T252 and T126 dnss. The ν0 profiles for the
T252 and T126 dns are determined using the scaling functions (16) and (17)
in conjunction with (5). Figure 5(a) illustrates good agreement between the
E1

K from each of the dnss. Importantly the energies in the low wavenumber
large scales of motion agree. In the higher wavenumbers, the lower resolution
cases decay slightly faster than the T504 case. The implications of using the
incorrect scaling for ν0 is illustrated with application to the T126 dns. Fig-
ure 5(b) illustrates E1

K resulting from the T126 dnss with ρj
0 = 29, 6 and 78.

The spectrum labelled ρj
0 = 29 is the same as the T126 dns spectrum in

Fig 5(a). The spectrum labelled ρj
0 = 78 produces a turn up at the end of

the spectrum due to the net eddy viscosity dropping off more rapidly. The
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Figure 4: Using the T126 dns data set, the sensitivity to ρ10 of the subgrid
coefficients properties: (a) ν11n (TR); and (b) ρ1n, for various values of TR.

viscosity νn represents the contribution of the subgrid scales S to the tendency
of the les resolved scales R. Therefore, we propose that the scaling observed
for νn, is also applicable to ν0. It was shown previously in Figure 3 that
νn and ν0 have consistent scaling. The sensitivity of this result is assessed
below. As an additional check, dnss are run with ν0 profiles generated using
the scaling functions. The resulting spectrum are compared to the spectrum
from the highest resolution T504 case.

Thus far the scaling laws for νn have been identified by running a series of dnss
with a prescribed ν0 truncated at various TR. The sensitivity of the results
is now determined by running additional dnss with varying ν0. Specifically
the T126 dns is run with three different bare viscosity profiles, each of which
are truncated back to several levels between TR = 31 and 126. In each case
ν0 is calculated according to (5), with νjj0 (TR) fixed and equal to νjjn(TR) of
the T504 dns truncated back to TR = 126 . Three different values of ρj0 are
used: ρj0 = 29 , consistent with the previous T126 dns; ρj0 = 6 , a typical
value used in atmospheric dns studies; and ρj0 = 78 , chosen to illustrate the
impact of an excessively large value. The impact of the ν0 profiles on ν11n (TR)
at various TR is first assessed. The trend line from Figure 3(a) is included in
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Figure 4(a), but this time plotted on a linear scale with TR/T the independent
variable. The dns calculations are repeated with ρj0 = 29 , 6 and 78, and
the resulting values of ν11n (TR) added to Figure 4(a). The values of ν11n (TR)
appear to deviate from each other for TR/T > 0.5 . The same is true regarding
the agreement of ρ1n determined from the various dnss in Figure 4(b). In
general, the closer TR is to T the greater influence ν0 has on νn. However,
in close proximity to T , ν11n (TR) approaches zero regardless of ν0. This is
because there are no subgrid scales at TR = T , and by definition νn = 0 . To
ensure the limiting case at T = TR and the prescribed ν0 had minimal impact
on the scaling functions describing νn, the regression lines in Figure 3 were
calculated using only the data points with TR/T 6 0.5 .

We now verify that a lower resolution dns with ν0 defined using the scaling
laws can replicate the statistics of a higher resolution dns. A comparison
is made between the time and m averaged kinetic energy spectrum on level
one (E1K) resulting from the T504, T252 and T126 dnss. The ν0 profiles for the
T252 and T126 dns are determined using the scaling functions (16) and (17) in
conjunction with (5). Figure 5(a) illustrates good agreement between the E1K
from each of the dnss. Importantly the energies in the low wavenumber
large scales of motion agree. In the higher wavenumbers, the lower resolution
cases decay slightly faster than the T504 case. The implications of using
the incorrect scaling for ν0 is illustrated with application to the T126 dns.
Figure 5(b) illustrates E1K resulting from the T126 dnss with ρj0 = 29 , 6
and 78. The spectrum labelled ρj0 = 29 is the same as the T126 dns spectrum
in Figure 5(a). The spectrum labelled ρj0 = 78 produces a turn up at the end
of the spectrum due to the net eddy viscosity dropping off more rapidly. The
spectrum from the ρj0 = 6 case rapidly decays at the higher wavenumbers,
with a turn up at the tail of the spectra. If the incorrect ν0 is applied, the
tails of the energy spectrum are not correctly represented; however, at these
resolutions the large scales still seem to be adequately captured.
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Figure 5: Comparison of E1
K between: (a) the T504 dns and the T126 dns

(top spectrum), and with the T252 dns (bottom spectrum); and (b) the
T126 dns using three different values of ρj

0.

spectrum from the ρj
0 = 6 case rapidly decays at the higher wavenumbers,

with a turn up at the tail of the spectra. If the incorrect ν0 is applied, the
tails of the energy spectrum are not correctly represented, however, at these
resolutions the large scales still seem to be adequately captured.

6 Concluding remarks

Data from a two level quasigeostrophic atmospheric model has been gener-
ated using dns. Subgrid parameterisations consisting of a net eddy viscosity
were generated from the dns data at various truncation levels. Self similar
scaling laws for the net eddy viscosity were determined from the results. At
present the scaling laws are level dependent, however, recent work has iden-
tified that these scalings can be unified by using a level dependent enstrophy
flux. These scaling laws may remove the need to produce high resolution ref-
erence dns data sets, which would widen the applicability of the les method
to more general cases.
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6 Concluding remarks

Data from a two level quasigeostrophic atmospheric model has been generated
using dns. Subgrid parameterisations consisting of a net eddy viscosity were
generated from the dns data at various truncation levels. Self similar scaling
laws for the net eddy viscosity were determined from the results. At present
the scaling laws are level dependent; however, recent work identified that
these scalings are unified by using a level dependent enstrophy flux. These
scaling laws may remove the need to produce high resolution reference dns
data sets, which would widen the applicability of the les method to more
general cases.
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