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Linear models for endocytic transformations
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Abstract

Endocytosis is the process by which cells internalise molecules in-
cluding nutrient proteins from the extracellular media. In one form,
macropinocytosis, the membrane at the cell surface ruffles and folds
over to give rise to an internalised vesicle. Negatively charged phos-
pholipids within the membrane called phosphoinositides then undergo
a series of transformations that are critical for the correct trafficking
of the vesicle within the cell, and which are often pirated by pathogens
such as Salmonella. Advanced fluorescent video microscopy imaging
now allows the detailed observation and quantification of these events
in live cells over time. Here we use these observations as a basis
for building differential equation models of the transformations. An
initial investigation of these interactions was modelled with reaction
rates proportional to the sum of the concentrations of the individual
constituents. A first order linear system for the concentrations re-
sults. The structure of the system enables analytical expressions to
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be obtained and the problem becomes one of determining the reaction
rates which generate the observed data plots. We present results with
reaction rates which capture the general behaviour of the reactions so
that we now have a complete mathematical model of phosphoinositide
transformations that fits the experimental observations. Some excellent
fits are obtained with modulated exponential functions; however, these
are not solutions of the linear system. The question arises as to how
the model may be modified to obtain a system whose solution provides
a more accurate fit.
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1 Introduction

The endolysosomal system of the eukaryotic cell is a highly dynamic net-
work of heterogeneous membrane bound compartments that mediates the
internalization of nutrients, signaling factors, particulate matter and fluid
from the extracellular environment into the cell [1]. In addition to being
essential for the maintenance of cellular homeostasis, the endosome plays a
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primary role in the sorting and segregation of internalized receptors which in
turn modulates both the type and extent of the elicited signaling response.
As an entry point into the cell, endocytic pathways are often exploited and
modulated by pathogens [2].

Mathematical modelling of biological systems often suffers from the sparsity
of experimental data available. To create a detailed model of how certain
concentrations of interacting molecules change over time usually requires, at
the very least, experimental snapshots of the concentrations at one or more
time points. However, recent advances in automated fluorescent microscope
imaging technology enable the experimental determination of a protein’s
sub-cellular localisation and its dynamic trafficking within a range of cellular
contexts in live cells, and hence to a deeper understanding of the proteins
and their function.

Here we show how this new detailed time based imaging can be utilised to
generate a model of endocytic transformations. In particular, we focus on
the phosphoinositides, a class of 3-phospholipids populating the membrane
surfaces of endosomes (Figure 1). Through the action of kinases such as
PIKfyve these may be transformed into one another as part of the matu-
ration process of the endosome. Here, by combining experimental live cell
imaging with modelling techniques we build a detailed rate based model of
the transformations being observed. In the future we aim to use such models
to predict modulations to the system such as those produced by pathogen
invasion.

2 Biomolecular experimental data and an

analysis of a linear model

We rely on experimental data generated to observe the molecules PI(3,4,5)P3,
PI(3)P, PIKfyve and a mutant (inactive) form of PIKfyve. Kerr et al. [3]
describe the experimental details in full. The essence of the approach is to
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(a) (b)

(c) (d)

Figure 1: These plots are (a) PI(3,4,5)P3, (b) PI(3)P, (c) PIKfyve and (d) a
mutant PIKfyve that blocks the transformation of PI(3)P to PI(3,5)P2; the
time is measured in seconds. Adapted from results by Kerr et al. [3].



2 Biomolecular experimental data and an analysis of a linear model C160

Figure 2: Schematic representation of the reactions.

attach green fluorescent protein (gfp) to the protein of interest in live cells.
Time lapse videomicroscopy is then performed on individual live cells using
a Zeiss LSM 510 meta confocal scanning microscope. The gfp is excited
with the 488nm argon laser line, and a series of (3D) z-stacks are collected
to create an image sequence of the protein of interest’s location over time.
To allow two proteins to be be simultaneously observed and distinguished
another fluorescent marker, mCherry, that has a distinct spectrum from gfp
can be used. In several of the experiments, a protocol was used that enabled
the contents of the vesicles to be filled with fluorescently visible Dextran. This
enables the region of a vesicle to be delineated, and the recruitment and/or
expulsion of a fluorescently tagged protein of interest to the vesicle region to
be quantified. Several live cell movies showing these dynamic transformations
were published by Kerr et al. [3]. The four plots of the data are shown in
Figure 1. The average fluorescent intensity, measured on an arbitrary scale, is
assumed proportional to the concentration and time t is measured in seconds.
There is a considerable amount of noise in the system and the changes of
slope early in the plots of PI(3,4,5)P3 and PIKfyve have been assumed due to
experimental or observational effects. There is a background fluorescence of
approximately 40 units, a manifestation of auto-fluorescence or non-specific
localisation. Accordingly, some of the fits for these two compounds have been
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made on subsets of the data.

A succession of reactions takes place at rates dependent on the concentrations
of the compounds taking part in the reactions, as well as certain enzymatic
kinases (which are assumed to have constant concentration). The rate of
change of concentration is a linear combination of the constituents taking part
in the reaction leading to a model portrayed as a system of linear constant
coefficient differential equations. The assumptions implicit in such models are
explained by Wilkinson [4]. This model was obtained by extracting a subset
of possible phosphoinostide transformations from all those possible [5]. The
differential equation for the concentrations of the components of the system is

dX

dt
=


−k1 k2 0 0 0 0

k1 −k2 − k3 0 0 0 0

0 k3 −k4 0 0 0

0 0 k4 −k6 k5 0

0 0 0 0 −k5 0

0 0 0 k6 0 0

X , (1)

where X = (PI45P2, PI345P3, PI34P2, PI3P, PI, PI35P2). Figure 2 shows a
schematic diagram of the process.

The general solution of the system given in equation (1) is

X =


PI45P2
PI345P3
PI34P2
PI3P

PI
PI35P2

 = M


c1 exp(rt)
c2 exp(st)
c3 exp(−k4t)
c4 exp(−k5t)
c5 exp(−k6t)

c6

 (2)
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where matrix M is

sk2(s+ k6)(s+ k4) rk2(r+ k6)(r+ k4) 0 0 0 0

s(s+ k1)(s+ k6)(s+ k4) r(r+ k1)(r+ k6)(r+ k4) 0 0 0 0

sk3(s+ k6)(s+ k1) rk3(r+ k6)(r+ k1) k4 − k6 0 0 0

sk3k4(s+ k1) rk3k4(r+ k1) k4 k5 −1 0

0 0 0 k6 − k5 0 0

k3k4k6(s+ k1) k3k4k6(r+ k1) k6 k6 1 1


(3)

and r and s are the roots of the quadratic equation

α2 + (k1 + k2 + k3)α+ k1k3 = 0 . (4)

Since the discriminant, D, of equation (4) is

D = (k1 + k2 + k3)
2 − 4k1k3 = (k1 + k2 − k3)

2 + 4k2k3 , (5)

the right-hand expression guarantees that both r and s are real and the
left-hand expression, being less than k1 + k2 + k3 in magnitude ensures that
the two roots are negative. On the assumption that the reaction rates ki are
positive, all the exponents in the solution are negative, including r and s. This
means that all compounds decay to zero, except PI(3,5)P2. The exponents in
the expression for the solution may be all different. If the eigenvalues of the
matrix in equation (1) have repeated roots, then terms of the form t exp(−kit)
or even t2 exp(−kit) are possible. In fact r and s cannot be equal since the
discriminant of the quadratic in α is always positive.

A second system is obtained when the evolution of PI(3,5)P2 from PI(3)P is
blocked. The box representing PI(3,5)P2 is absent as is the rate constant k6.
The system matrix is order five and comprises the first five rows and columns
of that in equation (1) with the rate k6 set to zero. The general solution is
similar to that of (1) except that the PI(3,5)P2 component is absent and, as
in (2), k6 is zero. Experimentally this case corresponds to a mutant form of
the PIKfyve kinase which does not enable PI(3)P to be phosphorylated to
PI(3,5)P2.
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3 Fitting the linear model

The general solution of the model problem is a linear combination of decaying
exponentials. In principle a set of least squares problems can determine the
rates and magnitudes of the compounds. However, the experimental data is
far from complete and the problem is to determine as much information as
possible from the experimental data.

The approximants are obtained by a combination of interpolation, least
squares fitting and numerical experiment. We set up a minimisation problem
using a mathematical programming routine to locate the parameter values
which optimise the quality of the approximation. The latter is measured
by some function of the residuals, the differences between the value of the
observation and the approximant at some chosen set of points. Least squares
objective functions are an obvious choice leading to a nonlinear least squares
problem in the case of the functions appearing in equation (2). This is
sometimes successful, but in several instances the objective has multiple
optima, making it difficult for a black box minimisation routine.

It is possible to make the problem easier for a black box routine by determining
the parameters in a sequence of stages. In the examples above most progress
was made by piecing together these stages, sometimes solving one or two
variable problems by algebraic methods.

One starting point for a multistage approximation algorithm is to argue that
for large times, only one term will remain, that corresponding to the smallest
magnitude exponential. So we fit the tails and express the solution as the
sum of this known part plus further exponential terms. This technique was
applied to PI(3,4,5)P3; the solution is, according to equation (2), the sum of
two exponentials.

When PI(3,5)P2 is blocked the data is given as the fluorescence of PIKfyve
which binds to PI(3)P and whose presence is responsible for the production of
PI(3,5)P2 from PI(3)P. In this way the PIKfyve fluorescent intensity is seen
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as a proxy for measuring PI(3)P. The time scales for PI(3)P and PI(3,4,5)P3
suggest that these reactions are uncoupled. Thus the time dependent part
may be captured as a single exponential term. Figure 3(a) shows a fit to a
mutant form of the PIKfyve kinase which blocks the transformation of PI(3)P
to PI(3,5)P2. The fitted curve is

PIKfyve = 247.6− 204.6 exp(−0.00064t), (6)

which fits the data with remarkable accuracy. Whether it is determined by a
least squares fit or by a simple analytic manipulation the residuals are small
and alternate in sign reminiscent of the optimality criterion of the Remez
algorithm.

A fit to the data for PI(3,4,5)P3 appears in Figure 3(b):

f(t) = aeαt + beβt + c (7)

with

a = −1.003× 104, α = −0.568× 10−1,
b = 1.006× 104, β = −0.559× 10−1, c = 28.00 . (8)

The long time value is attributable to background noise fluorescence; however,
a function of the form of (7) could not generate the two stationary points
which appear in the experimental data of Figure 2(a), thus the fit is made
from t = 15 s on the basis that the data prior to this time is unreliable. The
initial value of the fluorescence was captured by constraining the sum of the
coefficients. Least squares fitting does not provide a visually satisfactory
solution and so adjustments were made to the parameters to capture the
important features of the measured data plots.

For PI(3)P there is a significant difference in the time intervals over which
the reactions take place. The reaction involving PI(3,4,5)P3 ceases after
60 seconds whereas that for PI(3)P has hardly commenced. This means that
the exponential constants r and s will have much greater magnitude than
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(a) (b)

(c) (d)

Figure 3: From left to right and top to bottom these plots are (a) mu-
tant PIKfyve (with PI(3,5)P2 blocked) , (b) PI(3,4,5)P3, (c) PI(3)P, and
(d) PIKfyve.
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(a) (b)

Figure 4: Plots of (a) PI(3,4,5)P3, and (b) PI(3)P fitted using the modulated
exponentials of section 4.

k4 and k6. It implies that the reaction for PI(3)P is largely uncoupled from that
of PI(3,4,5)P3, and suggests that the behaviour of PI(3)P can be represented
by a linear combination of two exponentials. The heuristic argument about
rates of decay concludes that the lesser magnitude exponential coefficient will
account for the large time behaviour. We commence by fitting b exp(−βt)
to the data over the values for large time, having subtracted out the long
time equilibrium values. A second exponential term is then added and the
function, with b and β perturbed perhaps, fitted. The technique was used to
obtain the fits shown in 3(c) . The equation of the fit is equation (7) with

a = −2.2756× 105, α = −1.5922× 10−3,
b = 2.2757× 105, β = −1.5904× 10−3, c = 36.50 . (9)

The enzyme PIKfyve is monitored since its presence facilitates the production
of PI(3,5)P2 and thereby gives information on that compound. Taking the
data from t = 129 s to t = 886 s the plot in Figure 3(d) is obtained. The
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constants are

a = 1.644× 102, α = −6.134× 10−3,
b = −1.624× 102, β = −1.095× 10−2, c = 58.00 . (10)

The investigations of PI(3,4,5)P3 and PI(3)P leads to several conclusions.
First, in both examples the two exponential rate constants are almost equal.
This is consistent with the requirement that each term contributes significantly
to the fitted function. In order to capture the observed slopes of the data the
coefficients of the exponential terms must have opposite signs. Next, there
can be considerable variation in the constants of proportionality although, to
achieve a balance in the terms across the entire time scale, the magnitudes of
their values are always similar. Since the relationship between the fluorescence
and mass, say, is not known, the coefficients are not expected to provide
information concerning these aspects of the model. We conclude that the
plots only provide information about the temporal behaviour of the data.

The model used here is a simplified version of a more complex model and
further simplification does not appear possible. Thus, since the rate constants
for PI(3,4,5)P3 and PI(3)P are of different orders of magnitude this can only
be reconciled with the presence of PI(3,4)P2 as an intermediary in the linear
model.

When determining fits of equation (7) by first fitting the long time tail for
b and β, the values of the exponential constants showed little variation. Tests
were made on PI(3)P using the data up to t = 80 s—beyond this point the
reaction has probably terminated. The data when PI(3,5)P2 is blocked may
be fitted with a single exponential. The eigenvalue corresponding to the
blocked configuration is precisely k4 thus we have its value immediately.

Since the constants r and s are the roots of equation (4) we can draw some
important conclusions concerning k1, k2 and k3. Since all ki are nonnegative,
D is nonnegative. Thus D can only be zero if, and only if, k2 is zero and
k1 = k3 .
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Denote
s = k1 + k3 and d = k1 − k3 , (11)

and then
D = (k2 + s)

2 − (s2 − d2) = 2sk2 + k2
2 + d2. (12)

Since each term in this expression is nonnegative, D is small if and only if
each term is small.

On the grounds of continuity, we use the heuristic argument that if the
roots are nearly equal (which is an experimental observation) then so too
are k1 and k3. An estimate of k2 is obtained from equation (12) by setting
k1 = k3 and discarding k22:

k2 = |D|/2s = |α1 − α2|/[2(α1 + α2)] ≈ 0.003697 . (13)

4 Data fits with modulated exponential

functions

While displaying many of the broad features and time scales of the data, the
above fits are not particularly close to the experimental data. Hence we also
investigated other function forms to fit to the experimental data. Burrage
observed that Hill functions, similar to h(x) in equation (14), are often
utilised in biological modelling of inhibition and activation. Even though the
functions introduced below have not been determined from the current model,
the quality of the fits merits presentation and warrants further investigation.

The fitted plots of PI(3,4,5)P3 and PI(3)P in Figure 4 have the general form

y = a exp
[
kxh(x)

]
+ g where h(x) =

1− cxp

1+ dxp
, (14)

with k and p both nonnegative. Note that the constant g is not part of the
model, it merely describes the background fluorescence. When g is removed
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Table 1: Parameters for the modulated exponential functions of equa-
tion (14).

Component a c d g k p

PI(3,4,5)P3 18.75 3.63× 10−9 3.63× 10−10 35 0.041 5

PI(3)P 22 5.123× 10−7 5.123× 10−8 33 0.00322 2

Table 2: Summary of the results; the units are in seconds and 1/seconds.
Component Active Time rate implied

interval exponents rate constants
PI(3,4,5)P3 [15, 80] α = −0.170, β =

−0.167
α = k1, β = k3

PI(3)P [0, 2000] α = −0.0015922,
β = −0.0015904

α = k4, β = k6

PIKfyve [129, 645] α = −0.0061,
β = −0.011

PIKfyveblocked [0, 2000] α = −0.00064 α = k4

the function y is a single exponential modulated by h(x). For x small, h(x) is
unity; whereas for x large and positive, h(x) is close to −c/d. This is a very
versatile function as the constants a and g determine y at zero and infinity.
The remaining parameters can be used to capture intermediate behaviour.
Because the argument of the exponential function changes sign, equation (14)
captures the curvature of both PI(3,4,5)P3 and PI(3)P at small and large
times. The parameters whose values appear in Table 1 were determined on a
discrete set 0, 1, . . . ,N and scaled to the time intervals corresponding to each
experimental plot.
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5 Conclusions

In the absence of direct measurement of the whole process we nevertheless
construct a complete model of the reactions. The values of α and β in the
expression (7) and the time intervals on which they were determined appear
in Table 2. The constants of proportionality are not given since their values
may not be of significance in the current analysis.

The rate constants from the model which correspond to α and β are also
listed. The constant k2 was estimated by a speculative analysis given in
section 3, equation (13). The rate k5 has not been estimated; however, it
is probably of minor importance. Two values of k4 have been estimated by
two independent processes. They are of similar orders of magnitude, differing
by a factor of 2.5. Experimental variation could account for this difference
and further data from repetition of the experiments may help. A second
experiment that would be helpful in understanding this difference would be
the simultaneous imaging and quantification of PI(3,4,5)P2 and PI(3)P to give
more detail of the k3 and k4 rates in a single experiment. We did have this
data for one experiment, but the imaging proved difficult to quantify reliably
due to a high density of overlapping endosomes in the region of interest. We
hope to obtain further experimental data in the future.
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